A Bayesian estimator for the multifractal analysis of multivariate images

Herwig Wendt¹

Collaborations: P. Abry³, Y. Altmann², **S. Combrexelle**¹, N. Dobigeon¹, S. McLaughlin², J.-Y. Tourneret¹

¹ CNRS, IRIT, University of Toulouse, France

² Heriot-Watt University, Edinburgh, Scotland

³ CNRS, Physics Lab., Ecole Normale Supérieure de Lyon, France

JFRB, Toulouse, 31 May 2018

Empirical data: signals

Collab. Y. Yamamoto (U Tokyo) and K. Kiyono (U. Osaka)

fMRI signals

Ph. Ciuciu (CEA)

Empirical data: images

[Sheeren'11]

A Bayesian estimator for the multifractal analysis of multivariate images

Empirical data: images Van Gogh's Painting Hyperspectral image describe / analyze / model ? saturat anne Collab. Van Gogh Museum, Amsterdam

[Sheeren'11]

A Bayesian estimator for the multifractal analysis of multivariate images

functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data Markov field joint prior for multifractal parameters

functional analysis, geometric description and higher-order statistics

Multifractal spectrum

• Local regularity of X(t) at t_0

 $\begin{array}{l} \mathsf{H\ddot{o}lder\ exponent} \\ h(t_0) \triangleq \sup_{\alpha} \{ \alpha: \ |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \} \end{array} \qquad \qquad 0 < \alpha \end{array}$

Multifractal spectrum

• Local regularity of X(t) at t_0

 $\begin{array}{l} \mathsf{H\ddot{o}lder\ exponent} \\ h(t_0) \triangleq \sup_{\alpha} \{ \alpha: \ |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \} \end{array} \qquad \qquad 0 < \alpha \end{array}$

Multifractal spectrum

• Local regularity of X(t) at t_0

 $\begin{array}{l} \mathsf{H\ddot{o}lder\ exponent} \\ h(t_0) \triangleq \sup_{\alpha} \{ \alpha: \ |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \} \end{array} \qquad \qquad 0 < \alpha \end{array}$

Multifractal spectrum

• Local regularity of X(t) at t_0

 $\begin{array}{l} \mathsf{H\ddot{o}lder\ exponent} \\ h(t_0) \triangleq \sup_{\alpha} \{ \alpha: \ |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \} \end{array} \qquad \qquad 0 < \alpha \end{array}$

Multifractal spectrum

• Local regularity of X(t) at t_0

 $\begin{array}{l} \mathsf{H\ddot{o}lder\ exponent} \\ h(t_0) \triangleq \sup_{\alpha} \{ \alpha: \ |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \} \end{array} \qquad \qquad 0 < \alpha \end{array}$

- ► Local regularity of X(t) at t_0 Hölder exponent $h(t_0) \triangleq \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \}$ $0 < \alpha$
- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i | h(t_i) = h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) \triangleq \dim_H \{t : h(t) = h\}$$

- ► Local regularity of X(t) at t_0 Hölder exponent $h(t_0) \triangleq \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \}$ $0 < \alpha$
- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) \triangleq \dim_H \{t : h(t) = h\}$$

- ► Local regularity of X(t) at t_0 Hölder exponent $h(t_0) \triangleq \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \}$ $0 < \alpha$
- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i | h(t_i) = h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) \triangleq \dim_H \{t : h(t) = h\}$$

- ► Local regularity of X(t) at t_0 Hölder exponent $h(t_0) \triangleq \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \}$ $0 < \alpha$
- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i|h(t_i)=h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) \triangleq \dim_H \{t : h(t) = h\}$$

- ► Local regularity of X(t) at t_0 Hölder exponent $h(t_0) \triangleq \sup_{\alpha} \{ \alpha : |X(t) - X(t_0)| < C |t - t_0|^{\alpha} \}$ $0 < \alpha$
- Multifractal Spectrum $\mathcal{D}(h)$: Fluctuations of regularity h(t)
 - Set of points that share same regularity $\{t_i | h(t_i) = h\}$
 - Fractal (or Haussdorf) Dimension of each set:

$$\mathcal{D}(h) \triangleq \dim_H \{t : h(t) = h\}$$

Estimation: Multifractal formalism

• D(h) in practice \rightarrow multifractal formalism

[Parisi85]

Multiresolution quantities

d(j, k): DWT coefficient

Estimation: Multifractal formalism

- D(h) in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j\cdot, \cdot)\}$

$$\ell(j,k) \triangleq \sup_{\lambda' \subset \Im_{\lambda_{j,k}}} |d(\lambda')|, \quad d(j,k): \text{ DWT coefficient}$$

[Parisi85]

Estimation: Multifractal formalism

- D(h) in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j\cdot, \cdot)\}$

$$\ell(j,k) \triangleq \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \quad d(j,k): \text{ DWT coefficient}$$

A Bayesian estimator for the multifractal analysis of multivariate images

[Parisi85]

Estimation: Multifractal formalism

- D(h) in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j\cdot, \cdot)\}$

$$\ell(j,k) \triangleq \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \quad d(j,k): \text{ DWT coefficient}$$

[Parisi85]

Estimation: Multifractal formalism

- D(h) in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders $\{\ell(j\cdot,\cdot)\}$

$$\ell(j,k) riangleq \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k): ext{ DWT coefficient}$$

[Parisi85]

Estimation: Multifractal formalism

- D(h) in practice \rightarrow multifractal formalism
- Multiresolution quantities: wavelet leaders {\(\ell(j\cdot, \cdot)\)}\)

$$\ell(j,k) \triangleq \sup_{\lambda' \subset 3\lambda_{j,k}} |d(\lambda')|, \qquad d(j,k): \text{ DWT coefficient}$$
(under uniform regularity conditions)

Key property:

$$h(x_0) = \liminf_{j \to -\infty} \frac{\log \left(\ell_X(j, k(x_0)) \right)}{\log(2^j)}$$

[Parisi85]

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

$$X \to d(a, k) \to \ell(a, k)$$

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

$$X \to d(a, k) \to \ell(a, k)$$

$$S(a,q) = \frac{1}{n_a} \sum_{k=1}^{n_a} \ell(a,k)^q$$

structure functions

 $\mathbf{V} \rightarrow \mathbf{d}(\mathbf{a}, \mathbf{k}) \rightarrow \theta(\mathbf{a}, \mathbf{k})$

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

$$S(a,q) = \frac{1}{n_a} \sum_{k=1}^{n_a} \ell(a,k)^q$$

$$\log_2 S(a,q) : q=2$$

 $S(a,q) \simeq c_q a^{\zeta(q)}, \quad a \to 0$ power laws

 $\mathbf{V} \rightarrow \mathbf{d}(\mathbf{a}, \mathbf{k}) \rightarrow \theta(\mathbf{a}, \mathbf{k})$

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

$$S(a,q) = \frac{1}{n_a} \sum_{k=1}^{n_a} \ell(a,k)^q$$

$$\log_2 S(a,q) = \frac{1}{n_a} \sum_{k=1}^{n_a} \ell(a,k)^q$$

 $S(a,q) \simeq c_q a^{\zeta(q)}, \quad a \to 0$ power laws

 $\zeta(q) = \liminf_{a \to 0} \frac{\ln S(a,q)}{\ln a}$ scaling function

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

$$X \to d(a, k) \to \ell(a, k)$$

$$S(a, q) = \frac{1}{n_a} \sum_{k=1}^{n_a} \ell(a, k)^q$$

$$\log_2 S(a, q): q=2$$

$$\log_2 a$$

$$\begin{array}{rcl} S_n(a,q) & \simeq & a^d \sum_h a^{-D(h)} a^{hq} \\ & \simeq & \sum_h a^{d-D(h)+hq} \\ & a \rightarrow 0 \\ & \sim & c_a a^{\zeta(q)} \end{array}$$

Saddle-point argument: \Rightarrow Legendre transform $\zeta(q) = \min_{q \neq 0} (d + hq - D(h))$

Estimation: Multifractal formalism

[Frisch, Parisi'85], [Jaffard'04]

Multifractal spectrum and log-cumulants

- Polynomial expansion:

 $\zeta(q) = \sum_{p=1}^{\infty} c_p \frac{q^p}{p!}$

Multifractal spectrum and log-cumulants

Multifractal spectrum and log-cumulants

 $\rightarrow c_p$ tied to cumulants of $I(j,k) \triangleq \ln \ell(j,k)$

h

Multifractal spectrum and log-cumulants

 $\rightarrow c_n$ tied to cumulants of $l(i, k) \triangleq \ln \ell(i, k)$

- Average regularity $\sim c_1$ (\sim 2nd order statistics)

Multifractal spectrum and log-cumulants

 $\rightarrow c_p$ tied to cumulants of $l(j,k) \triangleq \ln \ell(j,k)$

- Average regularity $\sim \textit{c}_1~(\sim$ 2nd order statistics)
- Multifractality parameter $c_2 \sim$ fluctuations of regularity
 - tied to the variance of log-leaders:

Var [ln $\ell(j, k)$] = $c_2^0 + c_2 \ln 2^j$

Multifractal spectrum and log-cumulants

 $\rightarrow c_p$ tied to cumulants of $l(j,k) \triangleq \ln \ell(j,k)$

- Average regularity $\sim c_1$ (\sim 2nd order statistics)
- Multifractality parameter $c_2 \sim$ fluctuations of regularity
 - tied to the variance of log-leaders:

Var [ln $\ell(j, k)$] = $c_2^0 + c_2 \ln 2^j$

self-similar (finite var.) $\rightarrow c_2 = 0$

Multifractal spectrum and log-cumulants

 $\rightarrow c_p$ tied to cumulants of $l(j,k) \triangleq \ln \ell(j,k)$

- Average regularity $\sim c_1$ (\sim 2nd order statistics)
- Multifractality parameter $c_2 \sim$ fluctuations of regularity
 - tied to the variance of log-leaders:

Var [ln $\ell(j, k)$] = $c_2^0 + c_2 \ln 2^j$

 $\begin{array}{l} {\rm self-similar \ (finite \ var.) \ } \rightarrow \ c_2 = 0 \\ {\rm multifractal \ cascades \ } \rightarrow \ c_2 < 0 \end{array}$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

A Bayesian estimator for the multifractal analysis of multivariate images
Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: self-similar properties

Changing the global regularity $\sim c_1$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Intuitions: multifractal properties

Changing the regularity fluctuations $\sim c_2$

Multifractal analysis: Applications

Successful use in large panel of applications of very different natures

- physics (hydrodynamic turbulence, astrophysics and stellar plasmas, statistical physics, roughness of surfaces, ...)
- biology (human heart rate variabilities, fMRI, physiological signals or images, $\ldots)$
- geology (fault repartition)
- population geographical repartition, social behaviors
- computer network traffic
- finance and financial markets
- texture analysis
- Art investigation

. . .

linguistic and text analysis

Estimation of the multifractality parameter c_2

- Estimation of c₂ is challenging
 - linear regression based estimation Var [$\ln \ell(j,k)$] = $c_2^0 + c_2 \ln 2^j$

Hyperspectral image [Sheeren'11]

Estimation of the multifractality parameter c_2

- Estimation of c₂ is challenging
 - linear regression based estimation $| Var [ln \ell(j,k)] = c_2^0 + c_2 ln 2^j$

X poor estimation performance \longrightarrow need large image (patch)

Hyperspectral image [Sheeren'11]

 c₂₁ maps, patch size 64 × 64 (= 4096 pixels, 2 scales only)

Goal: improve estimation

Estimation of the multifractality parameter c_2

- Estimation of c₂ is challenging
 - linear regression based estimation Var [$\ln \ell(j,k)$] = $c_2^0 + c_2 \ln 2^j$

X poor estimation performance \longrightarrow need large image (patch)

Hyperspectral image [Sheeren'11]

- 1. Bayesian estimation for c_2 for single image
 - robust semiparametric model for log-leaders $_{\text{[TIP15,ICASSP16]}} \longrightarrow \text{Part } 2$

c₂₁ maps, patch size 64 × 64
(= 4096 pixels, 2 scales only)

Estimation of the multifractality parameter c_2

- Estimation of c₂ is challenging
 - linear regression based estimation Var [$\ln \ell(j,k)$] = $c_2^0 + c_2 \ln 2^j$

X poor estimation performance \longrightarrow need large image (patch)

1. Bayesian estimation for c_2 for single image

Goal: improve estimation

- robust semiparametric model for log-leaders $_{[\text{TIP15,ICASSP16}]} \longrightarrow \text{Part } 2$
- 2. Bayesian estimation for c_2 for multivariate data
 - regularization using Markov field joint prior $_{[{\rm EUSIPCO16,ICIP16,SIIMS18}]} \longrightarrow {\rm Part}\ 3$

Hyperspectral image [Sheeren'11]

c₂₁ maps, patch size 64 × 64
(= 4096 pixels, 2 scales only)

functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data Markov field joint prior for multifractal parameters

Part 2: Bayesian model for single image from Gaussian random field to data augmented model

Multifractal random walk (MRW) [Bacry01,Robert10]

Log-Poisson Cascade [Mandelbrot]

Variance-covariance

Var [
$$I(j, k)$$
] = $c_2^0 + jc_2 \ln 2$

- asymptotic covariance decay:
 - \rightarrow linear in log(Δk)
 - \rightarrow controlled by (c_2, c_2^0)

[Arneodo98]

 $\log_2(\Delta)$

Part 2: Bayesian model for single image

Gaussian random field model for log-leaders

Mean

$$\mathbb{E}[l(j,k)] = c_1^0 + jc_1 \ln 2$$

(discarded below)

Variance-covariance

0

Var [
$$I(j, k)$$
] = $c_2^0 + jc_2 \ln 2$

- asymptotic covariance decay:
 - ightarrow linear in log(Δk)
 - ightarrow controlled by (c_2, c_2^0)

Part 2: Bayesian model for single image

From a standard likelihood w.r.t. $(c_2, c_2^0) \dots$

$$\begin{array}{ll} - \text{ log-leaders at scale } j \colon & \boldsymbol{l}_{j} \triangleq (l(j,1), l(j,2), \dots) \\ & \rho(\boldsymbol{l}_{j} | (\boldsymbol{c}_{2}, \boldsymbol{c}_{2}^{0})) \propto (\det \boldsymbol{\Sigma}_{j, (\boldsymbol{c}_{2}, \boldsymbol{c}_{2}^{0})})^{-\frac{1}{2}} \exp\left(-(\boldsymbol{l}_{j}^{T} \boldsymbol{\Sigma}_{j, (\boldsymbol{c}_{2}, \boldsymbol{c}_{2}^{0})}^{-1} \boldsymbol{l}_{j})/2\right) \end{array}$$

empirical marginals (qq-plot) and covariance

Part 2: Bayesian model for single image From a standard likelihood w.r.t. (c_2, c_2^0) ... - log-leaders at scale j: $l_i \triangleq (l(j,1), l(j,2), \dots)$ $p(l_j|(c_2, c_2^0)) \propto (\det \Sigma_{j,(c_2, c_2^0)})^{-\frac{1}{2}} \exp \left(-(l_j^T \Sigma_{j,(c_2, c_2^0)}^{-1} l_j)/2\right)$ - inter-scale independence assumption: $\boldsymbol{l} = [\boldsymbol{l}_{i_1}^T, \dots, \boldsymbol{l}_{i_l}^T]^T$ $p(l|(c_2, c_2^0)) \propto \prod_{j=i_1}^{J_2} p(l_j|(c_2, c_2^0))$ covariance model $\rho_{i,a}$ sample covariance 0.15 0.05 empirical marginals (qq-plot) and covariance

Part 2: Bayesian model for single image From a standard likelihood w.r.t. $(c_2, c_2^0) \dots$ - log-leaders at scale j: $l_i \triangleq (l(j,1), l(j,2), \dots)$ $p(l_j|(c_2, c_2^0)) \propto (\det \Sigma_{j,(c_2, c_2^0)})^{-\frac{1}{2}} \exp \left(-(l_j^T \Sigma_{j,(c_2, c_2^0)}^{-1} l_j)/2\right)$ - inter-scale independence assumption: $\boldsymbol{l} = [\boldsymbol{l}_{i_1}^T, \dots, \boldsymbol{l}_{i_l}^T]^T$ $p(l|(c_2,c_2^0)) \propto \prod_{j=j_1}^{J_2} p(l_j|(c_2,c_2^0))$ covariance model $\rho_{i,\theta}$ sample covariance 0.15 0.05 empirical marginals (qq-plot) and covariance X inversion of $\sum_{i,(c_2,c_2^0)}$ prohibitive \rightarrow Whittle approximation X constraints: $\sum_{i,(c_2,c_2^0)}$ p.d. \rightarrow reparametrization X conjugacy of priors for parameters \rightarrow data augmentation
... to a data augmented likelihood

[TIP15,ICASSP16]

1. Whittle approximation \implies Fourier transform (DFT) of centered log-leaders l_j

 $f_{j,(c_2,c_2^0)}$: spectrum associated with model $arrho_{j,(c_2,c_2^0)}(\Delta k)$

 $p(l|(c_2, c_2^0))$

... to a data augmented likelihood

[TIP15,ICASSP16]

1. Whittle approximation \implies Fourier transform (DFT) of centered log-leaders l_j

$$y_{j} = DFT(l_{j}) \longrightarrow p(l_{j}|(c_{2}, c_{2}^{0})) \propto |f_{j,(c_{2}, c_{2}^{0})}^{-1}| \exp\left(\frac{y_{j}^{*}y_{j}}{f_{j,(c_{2}, c_{2}^{0})}}\right)$$
$$\longrightarrow F_{(c_{2}, c_{2}^{0})} = diag(f_{j_{1},(c_{2}, c_{2}^{0})}, \dots, f_{j_{2},(c_{2}, c_{2}^{0})})$$

X - $\textbf{\textit{F}}_{(c_2,c_2^0)} > 0:$ joint constraints on parameters

 $p(l|(c_2, c_2^0))$

... to a data augmented likelihood

[TIP15,ICASSP16]

1. Whittle approximation \implies Fourier transform (DFT) of centered log-leaders l_j

X - $F_{(c_2,c_2^0)} > 0$: joint constraints on parameters

2. Reparametrization \implies independent positivity constraints on parameters

$$\begin{aligned} \boldsymbol{c_2} &= (\boldsymbol{c_{20}}, \boldsymbol{c_{21}}) \triangleq \psi((\boldsymbol{c_2}, \boldsymbol{c_2^0})) \in \mathbb{R}_{\star}^{+2} \quad \longrightarrow \quad \text{separable } \boldsymbol{F}_{(c_2, c_2^0)} = \boldsymbol{c_{20}} \boldsymbol{F_0} + \boldsymbol{c_{21}} \boldsymbol{F_1} \\ \boldsymbol{F_0}, \ \boldsymbol{F_1} \text{ diagonal, positive definite, known and fixed} \end{aligned}$$

$$p(l|(c_2, c_2^0)) \longrightarrow p(l|c_2)$$

... to a data augmented likelihood

[TIP15,ICASSP16]

1. Whittle approximation \implies Fourier transform (DFT) of centered log-leaders l_j

$$\begin{aligned} \mathbf{y}_{j} &= \mathsf{DFT}(\mathbf{l}_{j}) \quad \longrightarrow \quad \mathsf{p}(\mathbf{l}_{j}|(c_{2},c_{2}^{0})) \propto |\mathbf{f}_{j,(c_{2},c_{2}^{0})}^{-1}| \exp\left(\frac{\mathbf{y}_{j}^{*}\mathbf{y}_{j}}{\mathbf{f}_{j,(c_{2},c_{2}^{0})}}\right) \\ &\longrightarrow \quad \mathbf{F}_{(c_{2},c_{2}^{0})} = \mathsf{diag}(\mathbf{f}_{j_{1},(c_{2},c_{2}^{0})},\ldots,\mathbf{f}_{j_{2},(c_{2},c_{2}^{0})}) \end{aligned}$$

X - $F_{(c_2,c_2^0)} > 0$: joint constraints on parameters

2. Reparametrization \implies independent positivity constraints on parameters

$$\begin{aligned} \boldsymbol{c}_2 = (\boldsymbol{c}_{20}, \boldsymbol{c}_{21}) &\triangleq \psi((\boldsymbol{c}_2, \boldsymbol{c}_2^0)) \in \mathbb{R}^{+2}_{\star} \quad \longrightarrow \quad \textit{separable } \boldsymbol{F}_{(\boldsymbol{c}_2, \boldsymbol{c}_2^0)} = \boldsymbol{c}_{20} \boldsymbol{F}_0 + \boldsymbol{c}_{21} \boldsymbol{F}_1 \\ \boldsymbol{F}_0, \ \boldsymbol{F}_1 \text{ diagonal, positive definite, known and fixed} \end{aligned}$$

X - conjugacy of priors for c_2 : LH does not factor in c_{20} and c_{21}

$$p(l|(c_2, c_2^0)) \longrightarrow p(l|c_2)$$

... to a data augmented likelihood

[TIP15,ICASSP16]

1. Whittle approximation \implies Fourier transform (DFT) of centered log-leaders l_j

$$\begin{aligned} \mathbf{y}_{j} &= \mathsf{DFT}(\mathbf{l}_{j}) \quad \longrightarrow \quad \mathsf{p}(\mathbf{l}_{j}|(c_{2},c_{2}^{0})) \propto |\mathbf{f}_{j,(c_{2},c_{2}^{0})}^{-1}| \exp\left(\frac{\mathbf{y}_{j}^{*}\mathbf{y}_{j}}{\mathbf{f}_{j,(c_{2},c_{2}^{0})}}\right) \\ &\longrightarrow \quad \mathbf{F}_{(c_{2},c_{2}^{0})} = \mathsf{diag}(\mathbf{f}_{j_{1},(c_{2},c_{2}^{0})},\ldots,\mathbf{f}_{j_{2},(c_{2},c_{2}^{0})}) \end{aligned}$$

X - $F_{(c_2,c_2^0)} > 0$: joint constraints on parameters

2. Reparametrization \Longrightarrow independent positivity constraints on parameters

$$\begin{aligned} \boldsymbol{c_2} = (c_{20}, c_{21}) \triangleq \psi((\boldsymbol{c_2}, \boldsymbol{c_2^0})) \in \mathbb{R}_{\star}^{+2} & \longrightarrow \quad \text{separable } \boldsymbol{F}_{(c_2, c_2^0)} = c_{20} \boldsymbol{F}_0 + c_{21} \boldsymbol{F}_1 \\ \boldsymbol{F}_0, \ \boldsymbol{F}_1 \text{ diagonal, positive definite, known and fixed} \end{aligned}$$

X - conjugacy of priors for c_2 : LH does not factor in c_{20} and c_{21}

3. Data augmentation \implies introduce hidden mean μ_j for y_j \implies complex Gaussian model for DFT $y = [y_{j_i}^T, ..., y_{j_i}^T]^T$ of log-leaders

[Tanner'87, van Dyk'01]

$$\left\{ \begin{array}{ll} \textbf{y} | \boldsymbol{\mu}, c_{20} & \sim \mathcal{CN}(\boldsymbol{\mu}, c_{20} \boldsymbol{F}_0) \text{ observed data} \\ \boldsymbol{\mu} | c_{21} & \sim \mathcal{CN}(\boldsymbol{0}, c_{21} \boldsymbol{F}_1) \text{ hidden mean} \end{array} \right.$$

$$p(l|(c_2,c_2^0)) \longrightarrow p(l|c_2) \longrightarrow p(y,\mu|c_2) \propto p(y|\mu,c_{20}) p(\mu|c_{21})$$

Part 2: Bayesian model for single image Augmented likelihood based Bayesian model [ICASSP16] • Augmented likelihood w.r.t. $c_2 = \psi((c_2, c_2^0))$ $p(\mathbf{y}, \boldsymbol{\mu} | \mathbf{c}_2) \propto \mathbf{c_{20}}^{-N_{\mathrm{Y}}} \exp\left(-\frac{1}{C_{20}}(\mathbf{y} - \boldsymbol{\mu})^H \boldsymbol{F}_0^{-1}(\mathbf{y} - \boldsymbol{\mu})\right) \times \mathbf{c_{21}}^{-N_{\mathrm{Y}}} \exp\left(-\frac{1}{C_{21}} \boldsymbol{\mu}^H \boldsymbol{F}_1^{-1} \boldsymbol{\mu}\right)$ Prior distribution for parameters c_{2i} as variance of Gaussian \rightarrow inverse-gamma prior $c_{2i} \sim \mathcal{IG}(\alpha_i, \beta_i)$ is conjugate Posterior distribution

$p(\pmb{c}_2,\pmb{\mu}|\pmb{y}) \propto p(\pmb{y},\pmb{\mu}|\pmb{c}_2)p(\pmb{c}_{20})p(\pmb{c}_{21})$

Bayesian estimators

ightarrow marginal posterior mean estimator (MMSE) $m{c_2}^{\mathsf{MMSE}} = \mathbb{E}[m{c_2}|m{y}]$

► Gibbs sampler

 $p(\boldsymbol{\mu}|\boldsymbol{c}_2, \boldsymbol{y})$ $p(\boldsymbol{c}_{2i}|\boldsymbol{c}_{2i'\neq i}, \boldsymbol{\mu}, \boldsymbol{y})$ closed-form Gaussian distributio

all standard distributions \rightarrow no Metropolis-Hasting moves

Part 2: Bayesian model for single image Augmented likelihood based Bayesian model [[CASSP16] • Augmented likelihood w.r.t. $c_2 = \psi((c_2, c_2^0))$ $p(y, \mu | c_2) \propto c_{20}^{-N_Y} \exp\left(-\frac{1}{c_{20}}(y-\mu)^H F_0^{-1}(y-\mu)\right) \times c_{21}^{-N_Y} \exp\left(-\frac{1}{c_{21}}\mu^H F_1^{-1}\mu\right)$ • Prior distribution for parameters c_{2i} as variance of Gaussian \rightarrow inverse-gamma prior $c_{2i} \sim IG(\alpha_i, \beta_i)$ is conjugate

Posterior distribution

$$p(\pmb{c}_2,\pmb{\mu}|\pmb{y}) \propto p(\pmb{y},\pmb{\mu}|\pmb{c}_2)p(\pmb{c}_{20})p(\pmb{c}_{21})$$

Bayesian estimators

ightarrow marginal posterior mean estimator (MMSE) $m{c_2}^{\mathsf{MMSE}} = \mathbb{E}[m{c_2}|m{y}]$

Gibbs sampler

 $p(\boldsymbol{\mu}|\boldsymbol{c}_2,\boldsymbol{y}) \\ p(\boldsymbol{c}_{2i}|\boldsymbol{c}_{2i'\neq i},\boldsymbol{\mu},\boldsymbol{y})$

closed-form Gaussian distribution closed-form inverse-gamma distributions

all standard distributions \rightarrow no Metropolis-Hasting moves

Part 2: Bayesian model for single image Does it work?

- Wavelet transform \rightarrow Daubechies' mother wavelet ($N_{\psi} = 2$)
- Sample sizes and analysis scales

2D multifractal Random walk (MRW)

N	26	2 ⁷	2 ⁸	2 ⁹	2 ¹⁰	211
j_1	1	1	2	2	2	2
j2	2	3	4	5	6	7
small				la	irge	

▶ Prior specification \rightarrow non informative priors

-
$$c_{2i} \sim \mathcal{IG}(\alpha_i, \beta_i)$$
 with $(\alpha_i, \beta_i) = (10^{-3}, 10^{-3}) \sim$ Jeffreys' prior

Estimation performance

MEAN	BIAS	STD	RMSE
$\mathbf{m}_{c_{2i}} = \widehat{\mathbb{E}}[\hat{c}_{2i}]$	$\mathbf{b}_{\mathbf{c}_{2_i}} = \mathbf{m}_{\mathbf{c}_{2_i}} - \mathbf{c}_{2_i}$	$s_{c_{2_i}} = \sqrt{\widehat{Var}[\hat{c}_{2_i}]}$	$r_{c_{2_i}} = \sqrt{b_{c_{2_i}}^2 + s_{c_{2_i}}^2}$

 \rightarrow assessed on 100 independent realizations

Estimation performance for c_{21} : 2D MRW

- BIAS Bayesian estimator \sim LF estimator
- STD, RMSE Bayesian estimator $\sim 1.5-4$ times below LF estimator

less than 5 times slower than LF

Part 2: Bayesian model for single image Empirical data: hyperspectral image

Part 1: Multifractal analysis

functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data Markov field joint prior for multifractal parameters

Part 3: Bayesian model for multivariate data Markov field joint prior for multifractal parameters

Part 3: Bayesian model for multivariate images Estimation for multifractality parameter *c*₂

- Multifractal formalism: linear regressions
 - $\sqrt{}$ successful for standard situations
 - single data
 - homogeneous
 - sufficient length
 - X small size piece of data
- Generic statistical model for log-leaders (Part 2)

 \rightarrow additional model assumptions for single data $\sqrt{}$ improved estimation performance \rightarrow small size $\sqrt{}$ Bayesian model and estimators

 \checkmark fast estimation algorithm

Part 3: Bayesian model for multivariate images Estimation for multifractality parameter *c*₂

- Multifractal formalism: linear regressions
 - $\sqrt{}$ successful for standard situations
 - single data
 - homogeneous
 - sufficient length
 - X small size piece of data
- Generic statistical model for log-leaders (Part 2)

 \longrightarrow additional model assumptions for single data $\sqrt{}$ improved estimation performance \rightarrow small size

- / Bayesian model and estimators
- \checkmark fast estimation algorithm
- Many data components: multivariate / joint estimation?
 - \longrightarrow organization of data components: prior information, regularization
 - \longrightarrow improve estimation

Part 3: Bayesian model for multivariate images Multifractal analysis for multivariate images?

- Motivations
 - naturally multivariate data
 - \longrightarrow multi-temporal, multi-band, multi-modal, voxels,...
 - non-homogeneous data
 - \longrightarrow localize: collection of small homogeneous pieces
- ightarrow joint analysis of the whole dataset?

[Prats-Montalban'11]

Multifractal analysis of multivariate images?

[Meneveau'90,HW.etal'18]

- intrinsically univariate definition of the multifractal spectrum D(h)
- X multivariate spectrum: conceptual limit \sim pair of time series / images
- ightarrow joint estimation of multifractal parameters

Part 3: Bayesian model for multivariate images Multifractal analysis for multivariate images?

- Motivations
 - naturally multivariate data
 - \longrightarrow multi-temporal, multi-band, multi-modal, voxels,...
 - non-homogeneous data
 - \longrightarrow localize: collection of small homogeneous pieces
- \rightarrow joint analysis of the whole dataset?

[Prats-Montalban'11]

• Multifractal analysis of multivariate images?

[Meneveau'90,HW.etal'18]

- intrinsically univariate definition of the multifractal spectrum D(h)
- X multivariate spectrum: conceptual limit \sim pair of time series / images
- ightarrow joint estimation of multifractal parameters

Part 3: Bayesian model for multivariate images Multifractal analysis for multivariate images?

- Motivations
 - naturally multivariate data
 - \longrightarrow multi-temporal, multi-band, multi-modal, voxels,...
 - non-homogeneous data
 - \longrightarrow localize: collection of small homogeneous pieces
- \rightarrow joint analysis of the whole dataset?

[Prats-Montalban'11]

• Multifractal analysis of multivariate images?

[Meneveau'90,HW.etal'18]

- intrinsically univariate definition of the multifractal spectrum D(h)
- X multivariate spectrum: conceptual limit \sim pair of time series / images
- ightarrow joint estimation of multifractal parameters

Images: multivariate scenarios

- $1\text{D} \rightarrow \text{temporal/spectral sequence of images}$
- 2D \rightarrow spatial patches (e.g., patched-based local multifractal analysis)
- 3D \rightarrow spatio-temporal/spectral patches

Images: multivariate scenarios

② P. Ciuciu, Parietal, INRIA

Images: multivariate scenarios

- 1D \rightarrow temporal/spectral sequence of images
- $\textbf{2D} \rightarrow$ spatial patches (e.g., patched-based local multifractal analysis)
- 3D \rightarrow spatio-temporal/spectral patches

Strategy: hierarchical Bayesian model

single data

data	у
param.	heta
LH	p(y heta)
prior	p(heta)
posterior	$p(heta y) \propto p(y heta)p(heta)$

$independent/univariate\ priors$

Strategy: hierarchical Bayesian model

	single data \longrightarrow	multivariate data
data param.	у Ө	$\begin{array}{llllllllllllllllllllllllllllllllllll$
LH	p(y heta)	$p(y_1 \theta_1), p(y_2 \theta_2), \ldots, p(y_K \theta_K)$
prior	p(heta)	$p(\theta_1), p(\theta_2), \ldots, p(\theta_K)$
posterior	$p(\theta y) \propto p(y \theta)p(\theta)$	

independent/univariate priors

Strategy: hierarchical Bayesian model

	single data \longrightarrow	multivariate data
data param.	$egin{array}{c} \mathbf{y} \\ \mathbf{ heta} \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
LH	p(y heta)	$p(y_1 \theta_1), p(y_2 \theta_2), \ldots, p(y_K \theta_K)$
prior	p(heta)	$p(\theta_1, \theta_2, \dots, \theta_K \beta)$
posterior	$p(\theta y) \propto p(y \theta)p(\theta)$	

Strategy: hierarchical Bayesian model

	single data \longrightarrow	multivariate data
data param.	$egin{array}{c} {\mathcal Y} \\ { heta} \end{array}$	$ \begin{array}{llllllllllllllllllllllllllllllllllll$
LH	p(y heta)	$p(y_1 heta_1), p(y_2 heta_2), \dots, p(y_K heta_K)$
prior	p(heta)	$p(heta_1, heta_2, heta_{\kappa}, heta_{\kappa} eta)$
posterior	$p(heta y) \propto p(y heta)p(heta)$	$p(\theta_1, \theta_2, \ldots, \theta_K y_1, y_2, \ldots, y_K, \beta)$
		$\propto (\prod_{k=1}^{K} p(y_k \theta_k)) p(\theta_1, \theta_2, \dots, \theta_K, \beta)$

joint prior

Strategy: hierarchical Bayesian model

	single data \longrightarrow	multivariate data
data param.	$egin{array}{c} \mathbf{y} \\ \mathbf{ heta} \end{array}$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
LH	p(y heta)	$p(y_1 \theta_1), p(y_2 \theta_2), \ldots, p(y_K \theta_K)$
prior	p(heta)	$p(\theta_1, \theta_2, \dots, \theta_K \beta)p(\beta)$
posterior	$p(heta y) \propto p(y heta)p(heta)$	$p(\theta_1, \theta_2, \ldots, \theta_K, \beta y_1, y_2, \ldots, y_K)$
		$\propto \left(\prod_{k=1}^{K} p(y_k \theta_k)\right) p(\theta_1, \theta_2, \dots, \theta_K \beta) p(\beta)$
		joint prior hyper-prior
		$(\hat{c}_1, \hat{c}_2)(\hat{c}_1, \hat{c}_2)(\hat{c}_1, \hat{c}_2)$

 $(\hat{c}_{1},\hat{c}_{2})$

Part 3: Bayesian model for multivariate images Strategy: hierarchical Bayesian model

For decomposition of image **X** into spatial patches X_k

- 1. Statistical model $p(\mathbf{y}_k, \boldsymbol{\mu}_k | \boldsymbol{c}_{2k})$
 - $c_{2k} = [c_{20,k}, c_{21,k}]^T$
 - y_k Fourier coefficients
 - μ_k hidden mean
- 2. Prior independence between patches: LH

 $p(\mathbf{Y}, \mathbf{M} | \mathbf{C_2}) \propto \prod_k p(\mathbf{y_k}, \mu_k | \mathbf{c_{2k}})$

- $C_2 = \{c_{20}, c_{21}\}$ with $c_{2i} = \{c_{2i,k}\}_k$ - $Y = \{y_k\}_k$ - $M = \{\mu_k\}_k$

Posterior

independent/univariate priors

$$p(\mathbf{C}_{2}, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \rho) \propto \underbrace{p(\mathbf{Y}, \mathbf{M} | \mathbf{C}_{2})}_{\text{augmented likelihood}} \times \prod_{i=0}^{1} \underbrace{\prod_{k} p(c_{2i,k} | \alpha, \beta)}_{\text{independent } \mathcal{I}\mathcal{G} \text{ priors}}$$

1

Patches X_k , $k = (m_1, m_2)$ $m_1 = 1, ..., N_x$ $m_2 = 1, ..., N_y$

Part 3: Bayesian model for multivariate images Strategy: hierarchical Bayesian model

For decomposition of image **X** into spatial patches X_k

- 1. Statistical model $p(\mathbf{y}_k, \mu_k | \mathbf{c}_{2k})$
 - $c_{2k} = [c_{20,k}, c_{21,k}]^T$
 - y_k Fourier coefficients
 - $\mu_{\pmb{k}}$ hidden mean
- 2. Prior independence between patches: LH

 $p(\mathbf{Y}, \mathbf{M} | \mathbf{C_2}) \propto \prod_k p(\mathbf{y_k}, \mu_k | \mathbf{c_{2k}})$

Patches X_k , $k = (m_1, m_2)$ $m_1 = 1, ..., N_x$ $m_2 = 1, ..., N_y$

-
$$C_2 = \{c_{20}, c_{21}\}$$
 with $c_{2i} = \{c_{2i,k}\}_k$
- Y = $\{y_k\}_k$
- M = $\{\mu_k\}_k$

► Posterior \rightarrow design of regularizing joint priors for C₂ $p(C_2, Z, M|Y, \rho) \propto \underbrace{p(Y, M|C_2)}_{\text{augmented likelihood}} \times \prod_{i=0}^{1} \underbrace{\prod_k p(c_{2i,k}|\alpha, \beta)}_{\text{independent IG priors}}$

▶ Regularization → specify $(\alpha, \beta) = (\alpha_k, \beta_k)$ within a hidden GaMRF

• Joint GaMRF prior for C_{2i} , i = 0, 1

 \rightarrow enforces smooth evolution of variances of Gaussian

[Dikmen'10]

▶ Regularization → specify $(\alpha, \beta) = (\alpha_k, \beta_k)$ within a hidden GaMRF

• Joint GaMRF prior for C_{2i} , i = 0, 1

 \rightarrow enforces smooth evolution of variances of Gaussian

[Dikmen'10]

- positive auxiliary variables $\boldsymbol{z}_i = \{z_{i,\boldsymbol{k}}\}_{\boldsymbol{k}}, \ i = 0, 1$

- ► Posterior $p(\mathbf{C}_2, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \rho) \propto \underbrace{p(\mathbf{Y}, \mathbf{M} | \mathbf{C}_2)}_{\text{augmented likelihood}} \prod_{i=0}^{1} \underbrace{\prod_{k=0}^{k} p(c_{2i,k} | \alpha, \beta)}_{\text{independent } \mathcal{IG} \text{ priors}}$
- ▶ Regularization → specify $(\alpha, \beta) = (\alpha_k, \beta_k)$ within a hidden GaMRF
- Joint GaMRF prior for C_{2i} , i = 0, 1

 \rightarrow enforces smooth evolution of variances of Gaussian

[Dikmen'10]

- positive auxiliary variables $\boldsymbol{z}_i = \{z_{i,\boldsymbol{k}}\}_{\boldsymbol{k}}, \ i = 0, 1$
- each $c_{2i,k}$ is connected to 4 variables $z_{i,k'}$ $k' \in \mathcal{V}_v(k) = \{(m_1, m_2) + (l_x, l_y)\}_{l_x, l_y=0,1}$ via edges with weights ρ_i

► Posterior $p(\mathbf{C}_2, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \rho) \propto \underbrace{p(\mathbf{Y}, \mathbf{M} | \mathbf{C}_2)}_{\text{augmented likelihood}} \prod_{i=0}^{1} \underbrace{\prod_k p(c_{2i,k} | \alpha, \beta)}_{\text{independent } \mathcal{IG} \text{ priors}}$

▶ Regularization → specify $(\alpha, \beta) = (\alpha_k, \beta_k)$ within a hidden GaMRF

• Joint GaMRF prior for C_{2i} , i = 0, 1

ightarrow enforces smooth evolution of variances of Gaussian

- positive auxiliary variables $\boldsymbol{z}_i = \{z_{i,\boldsymbol{k}}\}_{\boldsymbol{k}}, i = 0, 1$
- each $c_{2i,k}$ is connected to 4 variables $z_{i,k'}$ $k' \in \mathcal{V}_{v}(k) = \{(m_1, m_2) + (l_x, l_y)\}_{l_x, l_y=0,1}$ via edges with weights ρ_i
- each $z_{i,k}$ is connected to 4 variables $c_{2i,k'}$ $\mathbf{k}' \in \mathcal{V}_z(\mathbf{k}) = \{(m_1, m_2) + (l_x, l_y)\}_{l_x, l_y = -1, 0}$

[Dikmen'10]

Part 3: Bayesian model for multivariate images GaMRF prior for **C**₂: density and conditionals

$$p(\mathbf{C}_{2i}, \mathbf{Z}_{i}|\rho_{i}) = \frac{1}{K(\rho_{i})} \prod_{k} e^{-(4\rho_{i}+1)\ln c_{2i,k}} e^{(4\rho_{i}-1)\ln z_{i,k}} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$
$$= \frac{1}{K(\rho_{i})} \prod_{k} c_{2i,k}^{-(4\rho_{i}+1)} z_{i,k}^{(4\rho_{i}-1)} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$

- Conditionals for $c_{2i,k}$: \rightarrow inverse-gamma $p(c_{2i,k}|\mathbf{Z}_i, \rho_i) \propto c_{2i,k}^{-(4\rho_i+1)} e^{-\frac{\rho_i}{c_{2i,k}}\sum_{k' \in \mathcal{V}_{\mathbf{V}}(k)} z_{i,k'}}$ $\sim \mathcal{IG}(4\rho_i, \rho_i \sum_{k' \in \mathcal{V}_{\mathbf{V}}(k)} z_{i,k'})$

- Conditionals for $z_{i,k}$: $p(z_{i,k}|\mathbf{C}_{2i},\rho_{i}) \propto z_{i,k}^{(4\rho_{i}-1)} \prod_{k} e^{-\frac{\rho_{i}}{\mathbf{c}_{2i,k}}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)}z_{i,k'}} \\ \propto z_{i,k}^{(4\rho_{i}-1)} e^{-\sum_{k}\frac{\rho_{i}}{\mathbf{c}_{2i,k}}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)}z_{i,k'}} \\ \propto z_{i,k}^{(4\rho_{i}-1)} e^{-\rho_{i}z_{i,k}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)}\frac{1}{\mathbf{c}_{2i,k''}}} \\ \sim \mathcal{G}(4\rho_{i},\rho_{i}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)}\mathbf{c}_{2i,k''})$ **Part 3: Bayesian model for multivariate images** GaMRF prior for **C**₂: density and conditionals

$$p(\mathbf{C}_{2i}, \mathbf{Z}_{i}|\rho_{i}) = \frac{1}{K(\rho_{i})} \prod_{k} e^{-(4\rho_{i}+1)\ln c_{2i,k}} e^{(4\rho_{i}-1)\ln z_{i,k}} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$
$$= \frac{1}{K(\rho_{i})} \prod_{k} c_{2i,k}^{-(4\rho_{i}+1)} z_{i,k}^{(4\rho_{i}-1)} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$

- Conditionals for $c_{2i,k}$: \rightarrow inverse-gamma $p(c_{2i,k}|\mathbf{Z}_i, \rho_i) \propto c_{2i,k}^{-(4\rho_i+1)} e^{-\frac{\rho_i}{\Omega_{2i,k}}\sum_{\mathbf{k}' \in \mathcal{V}_{\mathbf{v}}(\mathbf{k})} z_{i,k'}}$ $\sim \mathcal{IG}(4\rho_i, \rho_i \sum_{\mathbf{k}' \in \mathcal{V}_{\mathbf{v}}(\mathbf{k})} z_{i,k'})$

- Conditionals for $z_{i,k}$: $p(z_{i,k}|\mathbf{C}_{2i},\rho_{i}) \propto z_{i,k}^{(4\rho_{i}-1)} \prod_{k} e^{-\frac{\rho_{i}}{2i,k}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)^{Z_{i,k'}}}} \\ \propto z_{i,k}^{(4\rho_{i}-1)} e^{-\sum_{k}\frac{\rho_{i}}{2i,k}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)^{Z_{i,k'}}}} \\ \propto z_{i,k}^{(4\rho_{i}-1)} e^{-\rho_{i}z_{i,k}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)\frac{1}{2i,k''}}} \\ \sim \mathcal{G}(4\rho_{i},\rho_{i}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)}\mathcal{C}_{2i,k''}^{-1})$ **Part 3: Bayesian model for multivariate images** GaMRF prior for **C**₂: density and conditionals

$$p(\mathbf{C}_{2i}, \mathbf{Z}_{i}|\rho_{i}) = \frac{1}{\mathcal{K}(\rho_{i})} \prod_{k} e^{-(4\rho_{i}+1)\ln c_{2i,k}} e^{(4\rho_{i}-1)\ln z_{i,k}} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$
$$= \frac{1}{\mathcal{K}(\rho_{i})} \prod_{k} c_{2i,k}^{-(4\rho_{i}+1)} z_{i,k}^{-(4\rho_{i}-1)} \times e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{v}(k)}z_{i,k'}}$$

- Conditionals for $c_{2i,k}$: \rightarrow inverse-gamma $p(c_{2i,k}|\mathbf{Z}_i, \rho_i) \propto c_{2i,k}^{-(4\rho_i+1)} e^{-\frac{\rho_i}{c_{2i,k}}\sum_{\mathbf{k}' \in \mathcal{V}_{\mathbf{v}}(\mathbf{k})} z_{i,k'}}$ $\sim \mathcal{IG}(4\rho_i, \rho_i \sum_{\mathbf{k}' \in \mathcal{V}_{\mathbf{v}}(\mathbf{k})} z_{i,k'})$

- Conditionals for $z_{i,k}$: $p(z_{i,k}|\mathbf{C}_{2i},\rho_{i}) \propto z_{i,k}^{(4\rho_{i}-1)}\prod_{k}e^{-\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)^{Z_{i,k'}}}}$ $\propto z_{i,k}^{(4\rho_{i}-1)}e^{-\sum_{k}\frac{\rho_{i}}{c_{2i,k}}\sum_{k'\in\mathcal{V}_{\mathbf{V}}(k)^{Z_{i,k'}}}}$ $\propto z_{i,k}^{(4\rho_{i}-1)}e^{-\rho_{i}z_{i,k}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)}\frac{1}{c_{2i,k''}}}$ $\sim \mathcal{G}(4\rho_{i},\rho_{i}\sum_{k''\in\mathcal{V}_{\mathbf{Z}}(k)}c_{2i,k''}^{-1})$ Part 3: Bayesian model for multivariate images Bayesian model with independent \mathcal{IG} priors (~ Part 2) Posterior independent/univariate model $p(\mathbf{C}_{2}, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \alpha, \beta) \propto \underbrace{p(\mathbf{Y}, \mathbf{M} | \mathbf{C}_{2})}_{\text{augmented likelihood}} \times \prod_{i=0}^{1} \underbrace{\prod_{k} p(c_{2i,k} | \alpha_{i}, \beta_{i})}_{\text{independent } \mathcal{I}\mathcal{G} \text{ priors}}$

 \blacktriangleright Bayesian estimator \rightarrow marginal posterior mean

$$\begin{split} \mathbf{C_2}^{\mathrm{MMSE}} &= \mathbb{E}[\mathbf{C_2}|\mathbf{Y},\rho] \quad \rho = (\rho_0,\rho_1) \\ \hat{\mathbf{C_2}}^{\mathrm{MMSE}} &\approx \frac{1}{N_{mc} - N_{bi}} \sum_{s=N_{bi}+1}^{N_{mc}} \mathbf{C_2}^{(s)} \end{split}$$

with $\{\mathbf{C}_{2}^{(s)}, \mathbf{M}^{(s)}\}_{s=1}^{N_{mc}}$ generated via an MCMC algorithm

Part 3: Bayesian model for multivariate images Bayesian model with GaMRF prior

Posterior

multivariate model

$$p(\mathbf{C}_{2}, \mathbf{Z}, \mathbf{M} | \mathbf{Y}, \rho) \propto \underbrace{p(\mathbf{Y}, \mathbf{M} | \mathbf{C}_{2})}_{\text{augmented likelihood}} \times \prod_{i=0}^{1} \underbrace{p(\mathbf{C}_{2i}, \mathbf{Z}_{i} | \rho_{i})}_{\text{GaMRF priors}}$$

▶ Bayesian estimator \rightarrow marginal posterior mean

$$egin{aligned} \mathbf{C_2}^{\mathrm{MMSE}} &= \mathbb{E}[\mathbf{C_2}|\mathbf{Y},
ho] \quad &
ho = (
ho_0,
ho_1) \ & \hat{\mathbf{C_2}}^{\mathrm{MMSE}} &pprox rac{1}{N_{mc} - N_{bi}} \sum_{s=N_{bi}+1}^{N_{mc}} \mathbf{C_2}^{(s)} \end{aligned}$$

with $\{C_2^{(s)}, M^{(s)}, Z^{(s)}\}_{s=1}^{N_{mc}}$ generated via an MCMC algorithm • Hyperparameters

 $\rightarrow \rho$ not estimated here, manually fixed
Part 3: Bayesian model for multivariate images Gibbs sampler with independent \mathcal{IG} priors (\sim Part 2)

1. Sampling of hidden means μ_k

 $p(\mu_k | \mathbf{C}_2, \mathbf{Y}, \rho)$

2. Sampling of parameters $c_{2i,k}$

 $p(c_{2i,k}| \mathbf{M}, \mathbf{Y}, \rho)$

closed-form Gaussian distributions

closed-form inverse-gamma distributions

Part 3: Bayesian model for multivariate images Gibbs sampler with GaMRF prior

1. Sampling of hidden means μ_k

 $p(\boldsymbol{\mu_k}|\mathbf{C}_2,\mathbf{Z},\mathbf{Y},\rho)$

closed-form Gaussian distributions

2. Sampling of parameters $c_{2i,k}$ $p(c_{2i,k}|\mathbf{Z}, \mathbf{M}, \mathbf{Y}, \rho)$

closed-form inverse-gamma distributions

3. Sampling of auxiliary variables Z $p(z_{i,k}|C_2, M, Y, \rho)$ closed-form gamma distributions

 \surd direct sampling for all conditional distributions \rightarrow efficient sampling scheme, tailored for large datasets

Synthetic multivariate multifractal image

 \rightarrow sequence of heterogeneous 2D multifractal multiplicative cascades

Multifractality parameter: single realization

shown slices

Multifractality parameter: single realization

 $LF \rightarrow$ strong spatial & temporal variability with no possible identification $IG \rightarrow$ spatial and temporal variability but rough identification $GaMRF \rightarrow$ spatial and/or temporal coherence with clear identification

Multifractality parameter: single realization

 $\mbox{GaMRF}\ \rightarrow$ spatial and/or temporal coherence with clear identification

Multifractality parameter: single realization

k-means classification

 $GaMRF \rightarrow spatial and/or temporal coherence with clear identification 3%$

Multifractality parameter: single realization

 $\label{eq:LF} \begin{array}{l} \mathsf{F} \to \mathsf{strong \ spatial \ \& \ temporal \ variability \ with \ no \ possible \ identification \ 54\% \\ \mathsf{IG} \to \mathsf{spatial \ and \ temporal \ variability \ but \ rough \ identification \ \ 45\% \\ \hline \mathsf{GaMRF} \to \mathsf{spatial \ and/or \ temporal \ coherence \ with \ clear \ identification \ \ 3\% \end{array}$

Multifractality parameter: estimation performance

	LF	IG	GaMRF
$ b_{c_{21}} $	0.0057	0.0017	0.0023
S _{c21}	0.038	0.011	0.0016
r _{c21}	0.039	0.011	0.0029

STD / RMSE:

- IG $\,\sim$ 4 times below LF
- GaMRF $\,\sim$ 10 times below LF

Multifractal analysis and hyperspectral imaging

- ► Hyperspectral (HS) imaging
 - observation of a scene at many different spectral bands ~ 100

- growing interest for spatial information

(ever increasing spatial resolution of sensors ...)

Multifractal analysis for textural information?

X limited attempts for HS \sim fractal dimensions / H [Dong'08,Sun'06,Yin'12]

- \rightarrow Multifractal features for textural information
- \longrightarrow Illustration for multivariate Bayesian estimation for multifractality

Analyzed hyperspectral image

Madonna hyperspectral dataset

[Sheeren'11]

- dataset acquired over Villelongue by Hyspex hyperspectral scanner
- 960 \times 1952 pixels with spatial resolution of 0.5m
- 160 spectral bands ranging from visible to near infrared

Numerical illustrations Does the model fit real-world data?

[Sheeren'11]

Does the model fit real-world data?

[Combrexelle-WHISPERS'15], [Sheeren'11]

sample covariance and model (64×64):

Numerical illustrations Does the model fit real-world data?

[Combrexelle-WHISPERS'15], [Sheeren'11]

sample covariance and model (256×256):

Spectral evolution of multifractal features

Multifractal features vs. reflectance

[Combrexelle-WHISPERS'15]

Forested area of interest

Multifractal spectrum

Average reflectance

Spatio-spectral evolution of multifractal features: C_{21}

► Spatio-spectral evolution of C₂₁

Spatio-spectral multifractal features: C₂₁

• Histograms of C_{21} estimates ($k_{\lambda} = 114$)

Fisher linear discriminant criteria of C_{21} estimates ($k_{\lambda} = 114$)

 $\rightarrow \mathsf{GMRF} > \mathsf{IG} \ \mathsf{LF}$

▶ Macroscopic Brain

Multifractal analysis

assessment of statistics / dependence beyond 2nd order

estimation via multifractal formalism using wavelet leaders
signal & image processing tool used in large panel of applications
e.g., physics, financial markets, geology, biology and biomedical (gene expression, fMRI, ...), Art investigation, network traffic, ...

Multifractal analysis

– assessment of statistics / dependence beyond 2nd order

estimation via multifractal formalism using wavelet leaders
signal & image processing tool used in large panel of applications
e.g., physics, financial markets, geology, biology and biomedical (gene expression, fMRI, ...), Art investigation, network traffic, ...

Multifractal analysis

– assessment of statistics / dependence beyond 2nd order

estimation via multifractal formalism using wavelet leaders
signal & image processing tool used in large panel of applications
e.g., physics, financial markets, geology, biology and biomedical (gene expression, fMRI, ...), Art investigation, network traffic, ...

Multifractal analysis: Bayesian estimation

- Gaussian random field model for log-leaders

covariance model $\rho_{j,\theta}$ sample covariance

Multifractal analysis: Bayesian estimation

- Gaussian random field model for log-leaders

- Whittle approximation & data augmentation

ightarrow data augmented Fourier domain likelihood

$(\sim \mathcal{CN})$

Multivariate model

– GaMRF joint prior for c_2 of different data components

- \rightarrow efficient inference via a Gibbs sampler (large data sets)
- ightarrow significantly improved estimation performance (gain: factor \sim 10)

herwig.wendt@irit.fr

www.irit.fr/~Herwig.Wendt/

Brief bibliography

- [Arneodo98] A. Arneodo, E. Bacry, and J. F. Muzy. Random cascades on wavelet dyadic trees. J. Math. Phys., 39(8):4142?4164, 1998.
- [Castaing93] B. Castaing, Y. Gagne, M. Marchand, *Log-similarity for turbulent flows?*, Physica D, 68(34):387-400, 1993.
- [Dikmen10] O. Dikmen, A.T. Cemgil, Gamma Markov random fields for audio source modeling, IEEE T. Audio, Speech, Lang. Proces., 18(3):589-601, 2010.
- [Jaffard04] S. Jaffard, *Wavelet techniques in multifractal analysis*, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Proc. Symp. Pure Math., M. Lapidus et al., Eds., pp. 91-152, AMS, 2004.
- [Mandelbrot90] B. Mandelbrot. Limit lognormal multifractal measures. In E.A. Dotsman, Y. Ne'eman, and A. Voronel, editors, Frontiers of Physics, Proc. Landau Memorial Conf., Tel Aviv, 1988, pages 309-340. Pergamon Press, 1990.
- [Parisi85] U. Frisch, G. Parisi, *On the singularity structure of fully developed turbulence; appendix to Fully developped turbulence and intermittency*, in Proc. Int. Summer School Phys. Enrico Fermi, North-Holland, pp. 84-88, 1985.
- [Robert05] C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer, New York, USA, 2005.

Brief bibliography (2)

- [TIP15] SC.HW.ND.JYT.SMcL.PA, *Bayesian Estimation of the Multifractality Parameter for Image Texture Using a Whittle Approximation*, IEEE T. Image Process., 24(8):2540-2551, 2015.
- [SIIMS18] HW.SC.YA.JYT.SMcL.PA, Multifractal analysis of multivariate images using gamma Markov random field priors, SIAM J. Imaging Sciences, 2018. In press.
- [ICASSP15] SC.HW.PA.ND.SMcL.JYT, A Bayesian approach for the joint estimation of the multifractality parameter and integral scale based on the Whittle approximation, Proc. ICASSP, Brisbane, Australia, April 2015.
- [ICASSP16] SC.HW.YA.JYT.SMcL.PA, A Bayesian framework for the multifractal analysis of images using data augmentation and a Whittle approximation, Proc. ICASSP, Shanghai, China, March 2016.
- [EUSIPC016] SC.HW.PA.JYT.SMcL.PA, Bayesian estimation for the local assessment of the multifractality parameter of multivariate time series, Proc. EUSIPCO, Budapest, Hungary, Sept. 2016.
- [ICIP16] SC.HW.YA.JYT.SMcL.PA, Bayesian joint estimation of the multifractality parameter of image patches using Gamma Markov Random Field priors, Proc. ICIP, Phoenix, AZ, USA, Sept. 2016.
- [EMBC17] P. Ciuciu, HW, SC, PA, Spatially regularized multifractal analysis for fMRI Data, Proc. EMBC, Jeju, South Korea, July 2017.
- [ISB118] HW, P. Ciuciu, PA, *Spatially regularized wavelet leader scale-free analysis of fMRI Data*, Proc. ISBI, Washington D.C., USA, April 2018.

38 / 37

fMRI data: Experimental design and acquisition

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9min10s) / 512 scans (8min39s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence (CMRR, USA), 3mm isotropic resolution, FOV of 192×192×144mm³

Shown results: $(-c_2)$ maps.

- for single subject (arbitrarily chosen from 40 participants).

fMRI data: Experimental design and acquisition

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9min10s) / 512 scans (8min39s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence (CMRR, USA), 3mm isotropic resolution, FOV of 192×192×144mm³

Shown results: $(-c_2)$ maps.

- for single subject (arbitrarily chosen from 40 participants).

fMRI data: Experimental design and acquisition

Data acquisition.

- resting-state fMRI images first: participant at rest, with eyes closed
- 543 scans (9min10s) / 512 scans (8min39s) for rest / task
- fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
- multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence (CMRR, USA), 3mm isotropic resolution, FOV of 192×192×144mm³

Shown results: $(-c_2)$ maps.

- for single subject (arbitrarily chosen from 40 participants).

A Bayesian estimator for the multifractal analysis of multivariate images

40 / 37

$((-c_2) \text{ maps})$

LF:

^{0.12} - poor estimation (var!)

IG & GaMRF:

- estimation var decrease

- increase of MF in DMN

GaMRF:

- enhanced MF contrast

scale-free dynamics in DMN for resting-state fMRI reported before, but for H only [He JNS'11].

→ evidence for richer, MF resting state brain dynamics

 \rightarrow significant MF in default mode network (DMN)

$((-c_2) \text{ maps})$

LF:

poor estimation (var!)

IG & GaMRF:

- estimation var decrease

 \rightarrow overall MF increase; working memory network (WMN), visual, sensory.

 $((-c_2) \text{ maps})$

LF:

poor estimation (var!)

IG & GaMRF:

- estimation var decrease

overall increase in MF during task

[Ciuciu FPhys'12]

GaMRF: significant MF in

- bilateral parietal regions belonging to WMN
 - occipital cortex (visual)
 - cerebellum (sensory) involved in task

Back

 \rightarrow overall MF increase; working memory network (WMN), visual, sensory.
- For certain classes of processes:

-
$$\mathbf{E}\ell(j,\cdot)^q = \mathbf{E}e^{q\ln\ell(j,\cdot)} = b_q 2^{j\zeta(q)}$$

- For certain classes of processes:

-
$$\mathbf{E}\ell(j,\cdot)^q = \mathbf{E}e^{q\ln\ell(j,\cdot)} = b_q 2^{j\zeta(q)}$$

 \Rightarrow 2nd characteristic function of ln $\ell(j, \cdot)$:

$$C_{p}(j) = \operatorname{Cum}_{p}[\ln \ell(j, \cdot)]: \text{ cumulant of order } p \ge 1$$
$$\ln \operatorname{\mathsf{E}} e^{q \ln \ell(j, \cdot)} = \sum_{p} C_{p}(j) \frac{q^{p}}{p!} = \ln b_{q} + \zeta(q) \ln 2^{j}$$

- For certain classes of processes:

$$- \mathbf{E}\ell(j,\cdot)^q = \mathbf{E}e^{q\ln\ell(j,\cdot)} = b_q 2^{j\zeta(q)}$$

 \Rightarrow 2nd characteristic function of ln $\ell(j, \cdot)$:

 $C_{p}(j) = \operatorname{Cum}_{p}[\ln \ell(j, \cdot)]: \text{ cumulant of order } p \ge 1$ $\ln \operatorname{Ee}^{q \ln \ell(j, \cdot)} = \sum_{p} C_{p}(j) \frac{q^{p}}{p!} = \ln b_{q} + \zeta(q) \ln 2^{j}$ $\xrightarrow{\infty} \qquad q^{p} \qquad \xrightarrow{\infty} \qquad q^{p}$

$$=\sum_{p=1}^{\infty}c_{p_0}\frac{q^p}{p!}+\sum_{p=1}^{\infty}c_{p_1}\frac{q^p}{p!}\ln 2^j$$

 $\Rightarrow \forall p \geq 1$:

$$C_p(j) = c_{p_0} + c_{p_1} \ln 2^j$$

[Castaing'93] Back

- For certain classes of processes:

$$- \mathbf{E}\ell(j,\cdot)^q = \mathbf{E}e^{q\ln\ell(j,\cdot)} = b_q 2^{j\zeta(q)}$$

 \Rightarrow 2nd characteristic function of ln $\ell(j, \cdot)$:

 $C_p(j) = \mathsf{Cum}_p[\ln \ell(j, \cdot)]$: cumulant of order $p \ge 1$

$$\ln \mathbf{E}e^{q\ln\ell(j,\cdot)} = \sum_{p} C_{p}(j)\frac{q^{p}}{p!} = \ln b_{q} + \zeta(q)\ln 2^{j}$$
$$= \underbrace{\sum_{p=1}^{\infty} c_{p_{0}}\frac{q^{p}}{p!}}_{\ln b_{q}} + \underbrace{\sum_{p=1}^{\infty} c_{p_{1}}\frac{q^{p}}{p!}}_{\zeta(q)}\ln 2^{j}$$

$$\Rightarrow \forall p \geq 1:$$

$$C_p(j) = c_{p_0} + c_{p_1} \ln 2^j$$

 \Rightarrow polynomial expansion

$$\zeta(q) = \sum_{p=1}^{\infty} c_{p_1} \frac{q^p}{p!}$$

Summary: log-wavelet leaders statistical model

Model: time-domain statistical model of log-leaders

1. Marginal distribution of log-leaders approximated by Gaussian

$$l(j,\cdot,\cdot) = \ln L(j,\cdot,\cdot) \sim \mathcal{N}(\cdot,c_2^0 + c_2 \ln 2^j)$$

2. Intra-scale parametric covariance model

$$\operatorname{Cov}[l(j,k), l(j,k+\Delta r)] \approx \varrho_j(\Delta r; \mathbf{v}), \quad \mathbf{v} = (c_2, c_2^0)$$

- ► Likelihood of centered log-leaders l_j stacked in $l = [l_{j_1}^T, ..., l_{j_2}^T]^T$
 - $\rightarrow\,$ scale-wise product of Gaussian likelihoods

$$p(l|m{v}) \propto \prod_{j=j_1}^{j_2} |m{\Sigma}_{j,m{v}}|^{-rac{1}{2}} \exp\left(-rac{1}{2}l_j^Tm{\Sigma}_{j,m{v}}^{-1}l_j
ight), ext{ with } m{\Sigma}_{j,m{v}} ext{ induced by } arrho_j(\Delta r;m{v})$$

X evaluation of p(l|v) numerically instable

[TIP15]

Model: Whittle approximation

Evaluation of the Gaussian likelihood in the spectral domain

$$p_W(l|\mathbf{v}) \propto \prod_{j=j_1}^{J_2} |\mathbf{\Gamma}_{j,\mathbf{v}}|^{-1} \exp\left(-\mathbf{y}_j^H \mathbf{\Gamma}_{j,\mathbf{v}}^{-1} \mathbf{y}_j\right)$$

- \boldsymbol{y}_j Fourier coefficients of \boldsymbol{l}_j
- $\Gamma_{j,v}$ parametric spectral density associated with $\varrho_j(\Delta r; v)$

 \rightarrow closed-form expression via Hankel transform

$$\boldsymbol{\mathsf{\Gamma}}_{j,\boldsymbol{\mathsf{v}}} = c_2 \; \boldsymbol{\mathsf{F}}_{1,j} + c_2^0 \; \boldsymbol{\mathsf{F}}_{2,j}, \quad \boldsymbol{\mathsf{F}}_{i,j} = \mathsf{diag}(\boldsymbol{\mathsf{f}}_{i,j})$$

- Estimation of v embedded in a Bayesian framework
 - space-domain likelihood (approximated) + common priors
 - X non-standard posterior distribution \rightarrow acceptance/reject moves

Model: Fourier-domain statistical model

Whittle approximation

$$\rho_W(\boldsymbol{l}|\boldsymbol{v}) \propto \prod_{j=j_1}^{j_2} |\boldsymbol{\Gamma}_{j,\boldsymbol{v}}|^{-1} \exp\left(-\boldsymbol{y}_j^H \boldsymbol{\Gamma}_{j,\boldsymbol{v}}^{-1} \boldsymbol{y}_j\right)$$

- \boldsymbol{y}_j Fourier coefficients of \boldsymbol{l}_j
- $\mathbf{F}_{j,\mathbf{v}} = c_2 \, \mathbf{F}_{1,j} + c_2^0 \, \mathbf{F}_{2,j}$ parametric spectral density
- Generative model for $\boldsymbol{y} = [\boldsymbol{y}_{j_1}^T, ..., \boldsymbol{y}_{j_2}^T]^T$

$$p(\mathbf{y}|\mathbf{v}) \propto |\mathbf{\Gamma}_{\mathbf{v}}|^{-1} \exp\left(-\mathbf{y}^{H} \mathbf{\Gamma}_{\mathbf{v}}^{-1} \mathbf{y}\right)$$

€

- complex Gaussian model $\mathbf{y} \sim \mathcal{CN}(\mathbf{0}, \mathbf{\Gamma}_{\mathbf{v}})$

-
$$\boldsymbol{\Gamma}_{\boldsymbol{\nu}} = c_2 \boldsymbol{F}_1 + c_2^0 \boldsymbol{F}_2$$
 and $\boldsymbol{F}_i = \text{block}(\boldsymbol{F}_{i,j_1}, \dots, \boldsymbol{F}_{i,j_2})$

X model non-separable in (c_2, c_2^0)

Model: Reparametrization

• Non-separable constraints on (c_2, c_2^0)

 $\pmb{\nu} \in \mathcal{A} = \{(c_2,c_2^0) \in \mathbb{R}^-_\star \times \mathbb{R}^+_\star | \pmb{\Gamma}_{\pmb{\nu}} = c_2 \pmb{\mathsf{F}}_1 + c_2^0 \pmb{\mathsf{F}}_2 \text{ positive-definite} \}$

- Design of a linear diffeomorphism ψ
 - 1 mapping joint constraints into independent positivity constraints

$$\psi : \mathcal{A} \to \mathbb{R}^{+2}_{\star}$$

 $: \mathbf{v} \mapsto \psi(\mathbf{v}) \triangleq \mathbf{v}$

2 yielding more convenient likelihood

$$p(\boldsymbol{y}|\boldsymbol{v}) \propto |\boldsymbol{\Gamma}_{\boldsymbol{v}}|^{-1} \exp\left(-\boldsymbol{y}^{H} \boldsymbol{\Gamma}_{\boldsymbol{v}}^{-1} \boldsymbol{y}\right) \quad \text{with}$$
for $\boldsymbol{v} \in \mathbb{R}^{+2}_{\star} \begin{cases} \boldsymbol{\Gamma}_{\boldsymbol{v}} = \tilde{\theta}_{1} \boldsymbol{\tilde{F}}_{1} + \tilde{\theta}_{2} \boldsymbol{\tilde{F}}_{2} & \text{positive-definite} \end{cases}$

 \rightarrow separability of the likelihood via data augmentation

Model: Data augmentation

Definition of an augmented model

$$\left\{ egin{array}{l} \mathbf{y}| oldsymbol{\mu}, ilde{ heta}_2 \sim \mathcal{CN}(oldsymbol{\mu}, ilde{ heta}_2 \mathbf{ ilde{F}}_2) & ext{observed data} \ \ oldsymbol{\mu} | ilde{ heta}_1 \sim \mathcal{CN}(oldsymbol{0}, ilde{ heta}_1 \mathbf{ ilde{F}}_1) & ext{hidden mean} \end{array}
ight.$$

with

$$p(\mathbf{y}|\mathbf{v}) = \int p(\mathbf{y}, \boldsymbol{\mu}|\mathbf{v}) d\boldsymbol{\mu}$$

• Virtues of the augmented likelihood $p(y, \mu | v)$

 $p(\mathbf{y}, \boldsymbol{\mu} | \mathbf{v}) \propto \tilde{\theta}_2^{-N_Y} \exp\left(-\frac{1}{\tilde{\theta}_2} (\mathbf{y} - \boldsymbol{\mu})^H \tilde{\mathbf{F}}_2^{-1} (\mathbf{y} - \boldsymbol{\mu})\right) \times \tilde{\theta}_1^{-N_Y} \exp\left(-\frac{1}{\tilde{\theta}_1} \boldsymbol{\mu}^H \tilde{\mathbf{F}}_1^{-1} \boldsymbol{\mu}\right)$ $\text{separable in } (\tilde{\theta}_1, \tilde{\theta}_2)$

/ conjugate to inverse-gamma priors

A Back

MCMC algorithm

- Strategy of Gibbs sampler
 - iterative sampling according to conditional laws
 - non-standard conditional laws \rightarrow Metropolis-within-Gibbs
 - computation of acceptance ratio at each iteration

$$r_{c_2} = \sqrt{\frac{\det \boldsymbol{\Sigma}(\boldsymbol{\nu}^{(t)})}{\det \boldsymbol{\Sigma}(\boldsymbol{\nu}^{(\star)})}} \times \prod_{j=j_1}^{j_2} \exp\left(-\frac{1}{2}\boldsymbol{l}_j^T \left(\boldsymbol{\Sigma}_{j,\boldsymbol{\nu}}(\boldsymbol{\nu}^{(\star)})^{-1} - \boldsymbol{\Sigma}_{j,\boldsymbol{\nu}}(\boldsymbol{\nu}^{(t)})^{-1}\right) \boldsymbol{l}_j\right)$$

Time block wise estimation (2D+time)

- \blacktriangleright Synthetic multifractal time series: Multifractal Random Walk \sim Mandelbrot's celebrated multiplicative cascades
- collection of 32×32 time series of length $N = 2^{14}$
 - piece-wise constant $c_2 \in \{-0.02, -0.04\}$ along time

Comparison of estimators for c₂

- $n_S = 2^{2,...,6}$ windows of lengths $L = \{2^{12}, 2^{11}, 2^{10}, 2^9, 2^8\}$
- LF univariate linear regression based estimation
- IG univariate Bayesian estimation
- GaMRF joint Bayesian estimator

[TIP15,ICASSP16]

A Bayesian estimator for the multifractal analysis of multivariate images

Time block wise estimation (2D+time)

Time block wise estimation (2D+time)

RMSE (50 independent realizations)

n _s / L	4 / 2 ¹²	8 / 211	16 / 2 ¹⁰	32 / 2 ⁹	64 / 2 ⁸
LF	0.020	0.026	0.037	0.058	0.102
IG	0.011	0.013	0.018	0.024	0.036
GaMRF	0.008	0.008	0.009	0.009	0.013