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Empirical data: images

Van Gogh’s Painting

BRUEGEL’S DRAWINGS UNDER THE MULTIFRACTAL MICROSCOPE
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Summary Recently, a growing interest in image processing tools for art analysis has emerged. Here, we

investigate the use of the wavelet leader based multifractal formalism for this purpose, a mathematical tool

for characterizing the regularity properties of homogeneous textures. We apply this tool to a set of digitized

version of authentic drawings by Bruegel and imitations. Multifractal attributes estimated on the paintings

enable us to discriminate the authentic drawings from imitations, give interesting insights into the regularity

properties of their textures and thus show that multifractal analysis is a promising tool for stylometry.

MULTIFRACTAL ANALYSIS OF IMAGES

Multifractal Spectrum
-Local regularity:

locally bounded function X(x), x = (x1, x2)

�⌃ local power law behavior

�⌃ |X(x) � X(x0)| ⇤ C|x � x0|� C > 0, � > 0

�⌃ largest such �: Hölder exponent h(x0)

-Multifractal spectrum:

�⌃ geometric structure of subsets Eh : h(xi) = h

D(h) = dimHausdorff{x : h(x) = h} (1)
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[Van Gogh F752 — within the Image Processing for Art Investigation

(IP4AI) research program (www.digitalpaintinganalysis.org)]

Minimum regularity
D(h), LX: locally bounded functions only!

-Minimum regularity

hm = lim inf
2j⌃0

ln supk |dX(j, k1, k2)|
ln 2j

(2)

�⌃ X locally bounded: hm > 0

-Fractional Integration

- if hm < 0:

�⌃ fractional integral of order ⇥ = max(0,�hm)

�⌃ FI⇥(X) locally bounded

- equivalently: apply multifractal formalism (3-5) to

d
(m),⇥
X (j,k) = 2⇥jd

(m)
X (j,k)

Multifractal Formalism
-Wavelet leaders:

LX(j, k1, k2) = sup
m,⌅�⇧3⌅j,k1,k2

|d(m)
X (⌅�)| (3)

d
(m)
X (j,k) – DWT coe⇥cients of locally bounded function

(2D orthonormal wavelet basis, L1 normalized)

⌅j,k1,k2
– dyadic cube [k12

j, (k1 + 1)2j) ⇥ [k22
j, (k2 + 1)2j)

3⌅j,k1,k2
– union with eight closest neighbors

�⌃ local supremum of wavelet coe�cients

-Multifractal formalism:

Scaling function (S(2j, q) = 1
nj

�
k LX(j, k1, k2)

q) .

⇤(q) = lim inf
2j⌃0

log2 S(2j, q)/ log2 2j (4)

Legendre transform:

L(h) = minq(2 + qh � ⇤(q)) ⌅ D(h) (5)

�⌃ upper bound for multifractal spectrum

Cumulant expansion
Polynomial expansion around q = 0:

- ⇤(q) =
⇥

p⌅1

cp
qp

p!

-L(h) ⌥ 2 � (h � c1)
2/(2|c2|) + · · ·

.

c1 – position of maximum

c2 – typical width

c3 – asymmetry

-Cp(2
j) – p-th cumulant of lnLX(j,k)

Cp(2
j) = c0

p + cp ln 2j (6)

Estimation
Eqs. (2), (4), (6) �⌃ linear regressions (cf. e.g. [1,2])

TRUE BRUEGEL VS. FORGERIES

Fractal & Scaling Properties
-Analysis: grey level intensity images

3 patches 1024 ⇥ 1024 pixel per drawing

N⇧ = 2, ⇥ = 0.75

�⌃ estimates consistent for di�erent patches of single drawing

-Power law behaviors:

�⌃ scales 16 ⇥ 16 to 128 ⇥ 128 pixel (3 octaves)

�⌃ fine scales
�⌃ hand style of artist

Multifractal Projections
projections on sub-spaces of multifractal attributes

-Results: imitations have

�⌃ globally more regularity (c1 and hmin larger).

�⌃ less regularity fluctuations along space (|c2| smaller).

�⌃ stylometry
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�⌃ consistent with results on Princeton experiment:

. paintings – original/copy by same artist .

Classification
Quadratic Discriminant Analysis: 3-tuple {c1, c2, hmin}.

�⌃ joint Gaussian – di�erent means / covariance per class

�⌃ classification: log-likelihood ratio

-Results:

�⌃ perfect detection of forgeries

�⌃ misclassification of 7 out 8 · 3 = 24 authentic patches

�⌃ one single false detection for patch averages

individual patches patch averages

0

misclassification [Brueghel, Forgery]:

[0.29, 0]

1 2 3 4 5 6 7 8 9 10 11 12

0

1 2 3 4 5 6 7 8 9 10 11 12

misclassification [Brueghel, Forgery]:

[0.13, 0]

�⌃ use any pair {c1, c2}, {c1, hmin}, {c2, hmin} instead:

decreased performance

Drawings courtesy of NY Metropolitan Museum of Art.

ICASSP 2012 — Kyoto — Japan
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Summary Recently, a growing interest in image processing tools for art analysis has emerged. Here, we

investigate the use of the wavelet leader based multifractal formalism for this purpose, a mathematical tool

for characterizing the regularity properties of homogeneous textures. We apply this tool to a set of digitized

version of authentic drawings by Bruegel and imitations. Multifractal attributes estimated on the paintings

enable us to discriminate the authentic drawings from imitations, give interesting insights into the regularity

properties of their textures and thus show that multifractal analysis is a promising tool for stylometry.
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Multifractal Spectrum
-Local regularity:

locally bounded function X(x), x = (x1, x2)
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[Van Gogh F752 — within the Image Processing for Art Investigation

(IP4AI) research program (www.digitalpaintinganalysis.org)]

Minimum regularity
D(h), LX: locally bounded functions only!

-Minimum regularity

hm = lim inf
2j⌃0

ln supk |dX(j, k1, k2)|
ln 2j

(2)

�⌃ X locally bounded: hm > 0

-Fractional Integration

- if hm < 0:

�⌃ fractional integral of order ⇥ = max(0,�hm)

�⌃ FI⇥(X) locally bounded

- equivalently: apply multifractal formalism (3-5) to

d
(m),⇥
X (j,k) = 2⇥jd

(m)
X (j,k)

Multifractal Formalism
-Wavelet leaders:

LX(j, k1, k2) = sup
m,⌅�⇧3⌅j,k1,k2

|d(m)
X (⌅�)| (3)

d
(m)
X (j,k) – DWT coe⇥cients of locally bounded function

(2D orthonormal wavelet basis, L1 normalized)

⌅j,k1,k2
– dyadic cube [k12

j, (k1 + 1)2j) ⇥ [k22
j, (k2 + 1)2j)

3⌅j,k1,k2
– union with eight closest neighbors

�⌃ local supremum of wavelet coe�cients

-Multifractal formalism:

Scaling function (S(2j, q) = 1
nj

�
k LX(j, k1, k2)

q) .

⇤(q) = lim inf
2j⌃0

log2 S(2j, q)/ log2 2j (4)

Legendre transform:

L(h) = minq(2 + qh � ⇤(q)) ⌅ D(h) (5)

�⌃ upper bound for multifractal spectrum

Cumulant expansion
Polynomial expansion around q = 0:

- ⇤(q) =
⇥

p⌅1

cp
qp

p!

-L(h) ⌥ 2 � (h � c1)
2/(2|c2|) + · · ·

.

c1 – position of maximum

c2 – typical width

c3 – asymmetry

-Cp(2
j) – p-th cumulant of lnLX(j,k)

Cp(2
j) = c0

p + cp ln 2j (6)

Estimation
Eqs. (2), (4), (6) �⌃ linear regressions (cf. e.g. [1,2])

TRUE BRUEGEL VS. FORGERIES

Fractal & Scaling Properties
-Analysis: grey level intensity images

3 patches 1024 ⇥ 1024 pixel per drawing

N⇧ = 2, ⇥ = 0.75

�⌃ estimates consistent for di�erent patches of single drawing

-Power law behaviors:

�⌃ scales 16 ⇥ 16 to 128 ⇥ 128 pixel (3 octaves)

�⌃ fine scales
�⌃ hand style of artist

Multifractal Projections
projections on sub-spaces of multifractal attributes

-Results: imitations have

�⌃ globally more regularity (c1 and hmin larger).

�⌃ less regularity fluctuations along space (|c2| smaller).

�⌃ stylometry
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Quadratic Discriminant Analysis: 3-tuple {c1, c2, hmin}.

�⌃ joint Gaussian – di�erent means / covariance per class

�⌃ classification: log-likelihood ratio

-Results:

�⌃ perfect detection of forgeries

�⌃ misclassification of 7 out 8 · 3 = 24 authentic patches

�⌃ one single false detection for patch averages
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Drawings courtesy of NY Metropolitan Museum of Art.
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g Éy

Part 1: Multifractal analysis
functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image
from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data
Markov field joint prior for multifractal parameters

Healthy 48hlt031

A Bayesian estimator for the multifractal analysis of multivariate images 3 / 37-



Part 1: Multifractal analysisg Éy

Multifractal spectrum

I Local regularity of X (t) at t0

Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)

h(t0)→ 1⇒ smooth, very regular,
h(t0)→ 0⇒ rough, very irregular

D(h) , dimH{t : h(t) = h}
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Hölder exponent
h(t0) , supα{α : |X (t)− X (t0)| < C |t − t0|α} 0 < α

I Multifractal Spectrum D(h) : Fluctuations of regularity h(t)
- Set of points that share same regularity {ti |h(ti ) = h}
- Fractal (or Haussdorf) Dimension of each set:

D(h) , dimH{t : h(t) = h}

t
i

h(t
i
) = 0.4

0.4

D(h)

h0

d

A Bayesian estimator for the multifractal analysis of multivariate images 3 / 37-



Part 1: Multifractal analysisg Éy

Multifractal spectrum

I Local regularity of X (t) at t0
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Part 1: Multifractal analysisg Éy

Estimation: Multifractal formalism
I D(h) in practice → multifractal formalism [Parisi85]

I Multiresolution quantities

: wavelet leaders {`(j ·, ·)} [Jaffard04]

`(j , k) , sup
λ′⊂3λj,k

|d(λ′)|,

d(j , k) : DWT coefficient

Key property: (under uniform regularity conditions)

h(x0) = lim inf
j→−∞

log
(
`X (j , k(x0))

)
log(2j)
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Part 1: Multifractal analysisg Éy

Estimation: Multifractal formalism
[Frisch,Parisi’85],[Jaffard’04]

X → d(a, k)→ `(a, k)

D(h) = minq 6=0 (d + qh − ζ(q))

⇓ ⇑

=⇒
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Estimation: Multifractal formalism
[Frisch,Parisi’85],[Jaffard’04]

X → d(a, k)→ `(a, k)

D(h) = minq 6=0 (d + qh − ζ(q))

Part I: Scaling & Irregularity – From 1/f spectra to Multifractals

Model 2: Multifractal !Multifractal formalism

Multifractal formalism

- Multiresolution Quantities : LX (a, t)

- Structure functions: S(a, q) = 1
na

Pna

k=1 |LX (a, t)|q

- Power laws: S(a, q) ' cq|a|⇣(q), a ! 0

Sn(a, q) ' ad
P

h a�D(h)ahq

' P
h ad�D(h)+hq

a!0⇠ cqa
⇣(q)

Saddle-point argument:
) Legendre transform

⇣(q) = minq 6=0 (d + hq � D(h))

- Scaling function: ⇣(q) = lim infa!0
ln S(a,q)

ln a
,

- Legendre transform : ⇣(q) ! D(h).
D(h) = min q 6=0(d + qh � ⇣(q))

- Multifractal formalism ! Scaling analysis:

S(a, q) ' Cqa
⇣(q),

a ! 0,
q � 0 AND q  0.

Herwig Wendt, CNRS, Univ. Toulouse – Multifractal analysis: Bayesian models, estimation and multivariate data. – 31/44
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Part 1: Multifractal analysisg Éy

Multifractal spectrum and log-cumulants
- Polynomial expansion:

ζ(q) =
∑∞

p=1 cp
qp

p!

⇒ D(h) ≈ d +
c2

2!

(
h − c1

c2

)2

− c3

3!

(
h − c1

c2

)3

+ . . .

D(h) = minq 6=0 (d + qh − ζ(q))

.

D(h)

h0

d

→ cp tied to cumulants of l(j , k) , ln `(j , k) [Castaing’93]

detailed

- Average regularity ∼ c1 (∼ 2nd order statistics)

- Multifractality parameter c2 ∼ fluctuations of regularity

- tied to the variance of log-leaders:

Var [ ln `(j , k) ] = c0
2 + c2 ln 2j

. self-similar (finite var.) → c2 = 0

. multifractal cascades → c2 < 0
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Multifractal spectrum and log-cumulants
- Polynomial expansion:

ζ(q) =
∑∞

p=1 cp
qp

p!

⇒ D(h) ≈ d +
c2

2!

(
h − c1

c2

)2

− c3

3!

(
h − c1

c2

)3

+ . . .

D(h) = minq 6=0 (d + qh − ζ(q))

.

→ cp tied to cumulants of l(j , k) , ln `(j , k) [Castaing’93] detailed

- Average regularity ∼ c1 (∼ 2nd order statistics)

- Multifractality parameter c2 ∼ fluctuations of regularity

- tied to the variance of log-leaders:

Var [ ln `(j , k) ] = c0
2 + c2 ln 2j

. self-similar (finite var.) → c2 = 0

. multifractal cascades → c2 < 0

A Bayesian estimator for the multifractal analysis of multivariate images 6 / 37-



Part 1: Multifractal analysisg Éy
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Part 1: Multifractal analysisg Éy

Intuitions: self-similar properties
Changing the global regularity ∼ c1

X(t) diff(X(t))

Spectrum, DWT (q = 2) Leaders (q = ±2) MF formalism

-10 -8 -6 -4 -2 0
-26

-24

-22

-20

-18

-16

-14

-12

-10

-8

S(ω, 2)

log10(ω)

−0.12

−0.13
Welch
DWT

-10 -8 -6 -4 -2 0
-24

-22

-20

-18

-16

-14

-12

-10

-8

LWT S(ω, q)

log10(ω)

−0.13

−0.14
q=2
q=-2

0 0.5 1
0

0.5

1
D(h)

h

c11 = 0.57

−→ 2nd order properties

A Bayesian estimator for the multifractal analysis of multivariate images 7 / 37-



Part 1: Multifractal analysisg Éy
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Part 1: Multifractal analysisg Éy

Multifractal analysis: Applications

Successful use in large panel of applications of very different natures

physics (hydrodynamic turbulence, astrophysics and stellar plasmas,
statistical physics, roughness of surfaces, . . . )

biology (human heart rate variabilities, fMRI, physiological signals or
images, . . . )

geology (fault repartition)

population geographical repartition, social behaviors

computer network traffic

finance and financial markets

texture analysis

Art investigation

linguistic and text analysis

. . .

A Bayesian estimator for the multifractal analysis of multivariate images 9 / 37-



Part 1: Multifractal analysisg Éy

Estimation of the multifractality parameter c2
I Estimation of c2 is challenging

- linear regression based estimation Var [ ln `(j , k) ] = c0
2 + c2 ln 2j

X poor estimation performance −→ need large image (patch)

1. Bayesian estimation for c2 for single image

- robust semiparametric model for log-leaders
[TIP15,ICASSP16] −→ Part 2

2. Bayesian estimation for c2 for multivariate data

- regularization using Markov field joint prior
. [EUSIPCO16,ICIP16,SIIMS18] −→ Part 3

Goal: improve estimation

Hyperspectral image [Sheeren’11]

.

.

I c21 maps, patch size 64× 64
(= 4096 pixels, 2 scales only)
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g Éy

Part 1: Multifractal analysis
functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image
from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data
Markov field joint prior for multifractal parameters

A Bayesian estimator for the multifractal analysis of multivariate images 11 / 37-



g Éy
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Part 2: Bayesian model for single imageg Éy

Gaussian random field model for log-leaders (1/2)

I Marginal distributions: log-Normal always good fit for multiscale
histograms of multifractal cascades [Mandelbrot90]

−→ log-leaders well approximated by Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

2j−2

2j−1

2j
...

...

k

d
X
(j, k)L

X
(j,k) = supλ’∈  3 λ |d

X,λ’
|

λ’∈  3 λ
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Gaussian random field model for log-leaders (1/2)

I Marginal distributions: log-Normal always good fit for multiscale
histograms of multifractal cascades [Mandelbrot90]

−→ log-leaders well approximated by Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

log-leaders l(2, ·) log-leaders l(3, ·) log-leaders l(4, ·)

empirical marginals (qq-plots)

Multifractal random walk (MRW) [Bacry01,Robert10]
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Gaussian random field model for log-leaders (1/2)

I Marginal distributions: log-Normal always good fit for multiscale
histograms of multifractal cascades [Mandelbrot90]

−→ log-leaders well approximated by Gaussian [ICASSP13,TIP15]

l(j , k) = ln `(j , k) ∼ N (E[l(j , k)],Var [l(j , k)])

log-leaders l(2, ·) log-leaders l(3, ·) log-leaders l(4, ·)

empirical marginals (qq-plots)

Log-Poisson Cascade [Mandelbrot]

A Bayesian estimator for the multifractal analysis of multivariate images 11 / 37-



Part 2: Bayesian model for single imageg Éy

Gaussian random field model for log-leaders (2/2)

I Mean
E[ l(j , k) ] = c0

1 + jc1 ln 2 (discarded below)

I Variance-covariance
Var [ l(j , k) ] = c0

2 + jc2 ln 2

- asymptotic covariance decay: [Arneodo98]

→ linear in log(∆k)
→ controlled by (c2, c

0
2 )

→ piecewise logarithmic model %j,(c2,c0
2 )(∆k) [ICASSP15,TIP15]

with parameters (c2, c
0
2 ) −→ Covariance matrix Σj,(c2,c0

2 )

A Bayesian estimator for the multifractal analysis of multivariate images 12 / 37-
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Part 2: Bayesian model for single imageg Éy

From a standard likelihood w.r.t. (c2, c
0
2 ) . . .

– log-leaders at scale j : lj , (l(j , 1), l(j , 2), . . . )

p(lj |(c2, c
0
2 )) ∝ (det Σj,(c2,c0

2 ))
− 1

2 exp
(
−(lTj Σ−1

j,(c2,c0
2 )
lj)/2

)

– inter-scale independence assumption: l = [lTj1 , . . . , l
T
j1 ]T

p(l|(c2, c
0
2 )) ∝

∏j2

j=j1
p(lj |(c2, c

0
2 ))

empirical marginals (qq-plot) and covariance

X inversion of Σj,(c2,c0
2 ) prohibitive → Whittle approximation

X constraints: Σj,(c2,c0
2 ) p.d. → reparametrization

X conjugacy of priors for parameters → data augmentation
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Part 2: Bayesian model for single imageg Éy

. . . to a data augmented likelihood [TIP15,ICASSP16]

1. Whittle approximation =⇒ Fourier transform (DFT) of centered log-leaders lj

y j = DFT (lj) −→ p(lj |(c2, c
0
2 )) ∝ |f −1

j,(c2,c
0
2 )
| exp

(
y∗j y j

f j,(c2,c
0
2 )

)
−→ F (c2,c

0
2 ) = diag(f j1,(c2,c

0
2 ), . . . , f j2,(c2,c

0
2 ))

. f j,(c2,c
0
2 ): spectrum associated with model %j,(c2,c

0
2 )(∆k)

2. Reparametrization =⇒ independent positivity constraints on parameters

c2 = (c20, c21) , ψ((c2, c
0
2 )) ∈ R+2

? −→ separable F (c2,c
0
2 ) = c20F 0 + c21F 1

. F 0, F 1 diagonal, positive definite, known and fixed

X - conjugacy of priors for c2: LH does not factor in c20 and c21

3. Data augmentation =⇒ introduce hidden mean µj for y j [Tanner’87, van Dyk’01]

=⇒ complex Gaussian model for DFT y = [yT
j1
, ..., yT

j2
]T of log-leaders{

y |µ, c20 ∼ CN (µ, c20F 0) observed data

µ|c21 ∼ CN (0, c21F 1) hidden mean

p(l|(c2, c
0
2 ))

−→ p(l|c2) −→ p(y ,µ|c2) ∝ p(y |µ, c20) p(µ|c21)
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Part 2: Bayesian model for single imageg Éy

Augmented likelihood based Bayesian model [ICASSP16]

I Augmented likelihood w.r.t. c2 = ψ((c2, c
0
2 ))

p(y ,µ|c2) ∝ c20
−NY exp

(
− 1

c20

(y−µ)HF−1
0 (y−µ)

)
× c21

−NY exp
(
− 1

c21

µHF−1
1 µ
)

I Prior distribution for parameters

c2 i as variance of Gaussian

→ inverse-gamma prior c2 i ∼ IG(αi , βi ) is conjugate

I Posterior distribution
p(c2,µ|y) ∝ p(y ,µ|c2)p(c20)p(c21)

I Bayesian estimators

→ marginal posterior mean estimator (MMSE) c2
MMSE = E[c2|y ]

I Gibbs sampler
p(µ|c2, y) closed-form Gaussian distribution .
p(c2 i |c2 i′ 6=i ,µ, y) closed-form inverse-gamma distributions .

all standard distributions → no Metropolis-Hasting moves

summary detailed
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Part 2: Bayesian model for single imageg Éy

Does it work?

I Wavelet transform → Daubechies’ mother wavelet (Nψ = 2)

I Sample sizes and analysis scales

2D multifractal Random walk (MRW)

N 26 27 28 29 210 211

j1 1 1 2 2 2 2
j2 2 3 4 5 6 7
N small large

I Prior specification → non informative priors

– c2 i ∼ IG(αi , βi ) with (αi , βi ) = (10−3, 10−3) ∼ Jeffreys’ prior

I Estimation performance

MEAN BIAS STD RMSE

mc2 i
= Ê[ĉ2 i ] bc2 i

= mc2 i
− c2 i sc2 i

=

√
V̂ar[ĉ2 i ] rc2 i

=
√

b2
c2 i

+ s2
c2 i

→ assessed on 100 independent realizations
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Part 2: Bayesian model for single imageg Éy

Estimation performance for c21: 2D MRW
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c2
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c2

sc2
MRW

N = 27

-0.1 -0.08 -0.06 -0.04 -0.02

c2

rc2

Estimation performance for c21 – 2D MRW – N=26, 27

- BIAS Bayesian estimator ∼ LF estimator

- STD, RMSE Bayesian estimator ∼ 1.5− 4 times below LF estimator

- Bayesian estimator less than 5 times slower than LF
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Part 2: Bayesian model for single imageg Éy

Empirical data: hyperspectral image

I n = 64× 64 patches

I c21 maps

linear regression: Bayesian:

→ spatial coherence

A Bayesian estimator for the multifractal analysis of multivariate images 18 / 37-



g Éy

Part 1: Multifractal analysis
functional analysis, geometric description and higher-order statistics

Part 2: Bayesian model for single image
from Gaussian random field to data augmented model

Part 3: Bayesian model for multivariate data
Markov field joint prior for multifractal parameters
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Part 3: Bayesian model for multivariate imagesg Éy

Estimation for multifractality parameter c2

I Multifractal formalism: linear regressions
√ successful for standard situations

- single data
- homogeneous
- sufficient length

X small size piece of data

I Generic statistical model for log-leaders (Part 2)

−→ additional model assumptions for single data
√ improved estimation performance → small size
√ Bayesian model and estimators
√ fast estimation algorithm

.

. .

. .

I Many data components: multivariate / joint estimation?

−→ organization of data components: prior information, regularization

−→ improve estimation
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Part 3: Bayesian model for multivariate imagesg Éy

Multifractal analysis for multivariate images?
I Motivations

– naturally multivariate data

−→ multi-temporal, multi-band, multi-modal, voxels,. . .

– non-homogeneous data

−→ localize: collection of small homogeneous pieces

→ joint analysis of the whole dataset? [Prats-Montalban’11]

I Multifractal analysis of multivariate images? [Meneveau’90,HW.etal’18]

– intrinsically univariate definition of the multifractal spectrum D(h)

X multivariate spectrum: conceptual limit ∼pair of time series / images

→ joint estimation of multifractal parameters
.
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Part 3: Bayesian model for multivariate imagesg Éy

Images: multivariate scenarios

1D 2D 3D

- 1D → temporal/spectral sequence of images

- 2D → spatial patches (e.g., patched-based local multifractal analysis)

- 3D → spatio-temporal/spectral patches
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Part 3: Bayesian model for multivariate imagesg Éy

Strategy: hierarchical Bayesian model

single data

−→ multivariate data

data y

y1, y2, . . . , yK

param. θ

θ1, θ2, . . . , θK

LH p(y |θ)

p(y1|θ1), p(y2|θ2), . . . , p(yK |θK )

prior p(θ)

p(θ1), p(θ2), . . . , p(θK )

posterior p(θ|y) ∝ p(y |θ)p(θ)

p(θ1, θ2, . . . , θK |y1, y2, . . . , yK , β)

∝
(∏K

k=1 p(yk |θk)
)
p(θ1, θ2, . . . , θK , β)

independent/univariate priors

hyper-prior
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Part 3: Bayesian model for multivariate imagesg Éy

Strategy: hierarchical Bayesian model

For decomposition of image X into spatial patches Xk

1. Statistical model p(yk ,µk |c2k)

- c2k = [c20,k , c21,k ]T

- yk Fourier coefficients
- µk hidden mean

2. Prior independence between patches: LH

p(Y,M|C2) ∝∏kp(yk ,µk |c2k) Patches Xk ,
k = (m1,m2)
m1 = 1, . . . ,Nx

m2 = 1, . . . ,Ny

1

- C2 = {c20, c21} with c2 i = {c2 i,k}k
- Y = {yk}k
- M = {µk}k

I Posterior independent/univariate priors

p(C2,Z,M|Y, ρ) ∝ p(Y,M|C2)︸ ︷︷ ︸
augmented likelihood

×∏1
i=0

∏
kp(c2i,k |α, β)︸ ︷︷ ︸

independent IG priors

A Bayesian estimator for the multifractal analysis of multivariate images 23 / 37-



Part 3: Bayesian model for multivariate imagesg Éy
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- Y = {yk}k
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Part 3: Bayesian model for multivariate imagesg Éy

Gamma Markov random field (GaMRF) prior for C2

I Posterior independent/univariate priors

p(C2,Z,M|Y, ρ)∝p(Y,M|C2)︸ ︷︷ ︸
augmented likelihood

∏1
i=0

∏
kp(c2i,k |α, β)︸ ︷︷ ︸

independent IG priors

I Regularization → specify (α, β) = (αk , βk) within a hidden GaMRF

I Joint GaMRF prior for C2i , i = 0, 1

→ enforces smooth evolution of variances of Gaussian [Dikmen’10]

- positive auxiliary variables z i = {zi,k}k , i = 0, 1

- each c2i,k is connected to 4 variables zi,k′

. k ′ ∈ Vv (k) = {(m1,m2) + (lx , ly )}lx ,ly=0,1

via edges with weights ρi

- each zi,k is connected to 4 variables c2i,k′

. k ′ ∈ Vz(k) = {(m1,m2) + (lx , ly )}lx ,ly=−1,0
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Gamma Markov random field (GaMRF) prior for C2

I Posterior independent/univariate priors

p(C2,Z,M|Y, ρ)∝p(Y,M|C2)︸ ︷︷ ︸
augmented likelihood

∏1
i=0

∏
kp(c2i,k |α, β)︸ ︷︷ ︸

independent IG priors

I Regularization → specify (α, β) = (αk , βk) within a hidden GaMRF

I Joint GaMRF prior for C2i , i = 0, 1

→ enforces smooth evolution of variances of Gaussian [Dikmen’10]

- positive auxiliary variables z i = {zi,k}k , i = 0, 1

- each c2i,k is connected to 4 variables zi,k′

. k ′ ∈ Vv (k) = {(m1,m2) + (lx , ly )}lx ,ly=0,1

via edges with weights ρi

- each zi,k is connected to 4 variables c2i,k′

. k ′ ∈ Vz(k) = {(m1,m2) + (lx , ly )}lx ,ly=−1,0

A Bayesian estimator for the multifractal analysis of multivariate images 24 / 37-



Part 3: Bayesian model for multivariate imagesg Éy
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Part 3: Bayesian model for multivariate imagesg Éy

GaMRF prior for C2: density and conditionals

p(C2i ,Z i |ρi ) =
1

K (ρi )

∏
k
e−(4ρi+1) ln c2 i,k e(4ρi−1) ln zi,k × e

− ρi
c2 i,k

∑
k′∈Vv (k) zi,k′

=
1

K (ρi )

∏
k
c2i,k

−(4ρi+1)zi,k
(4ρi−1) × e

− ρi
c2 i,k

∑
k′∈Vv (k)zi,k′

- Conditionals for c2i,k : → inverse-gamma

p(c2i,k |Z i , ρi ) ∝ c2i,k
−(4ρi+1)e

− ρi
c2 i,k

∑
k′∈Vv (k) zi,k′

∼ IG(4ρi , ρi
∑

k′∈Vv (k)zi,k′)

- Conditionals for zi,k : → gamma

p(zi,k |C2i , ρi ) ∝ zi,k
(4ρi−1)∏

ke
− ρi

c2 i,k

∑
k′∈Vv (k)zi,k′

∝ zi,k
(4ρi−1)e

−∑k
ρi

c2 i,k

∑
k′∈Vv (k)zi,k′

∝ zi,k
(4ρi−1)e

−ρi zi,k
∑

k′′∈Vz (k)
1

c2 i,k′′

∼ G(4ρi , ρi
∑

k′′∈Vz (k)c2
−1
i,k′′)
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Part 3: Bayesian model for multivariate imagesg Éy

Bayesian model with independent IG priors (∼ Part 2)

I Posterior independent/univariate model

p(C2,Z,M|Y, α, β)∝p(Y,M|C2)︸ ︷︷ ︸
augmented likelihood

×∏1
i=0

∏
kp(c2i,k |αi , βi )︸ ︷︷ ︸

independent IG priors

I Bayesian estimator → marginal posterior mean

C2
MMSE = E[C2|Y, ρ] ρ = (ρ0, ρ1)

Ĉ2
MMSE ≈ 1

Nmc − Nbi

Nmc∑

s=Nbi+1

C2
(s)

with {C2
(s),M(s)

,Z(s)

}Nmc
s=1 generated via an MCMC algorithm

I Hyperparameters

→ ρ not estimated here, manually fixed
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Part 3: Bayesian model for multivariate imagesg Éy

Bayesian model with GaMRF prior

I Posterior multivariate model

p(C2,Z,M|Y, ρ)∝p(Y,M|C2)︸ ︷︷ ︸
augmented likelihood

×∏1
i=0 p(C2i ,Z i |ρi )︸ ︷︷ ︸
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Ĉ2
MMSE ≈ 1

Nmc − Nbi

Nmc∑
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C2
(s)
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Part 3: Bayesian model for multivariate imagesg Éy

Gibbs sampler with independent IG priors (∼ Part 2)

1. Sampling of hidden means µk

p(µk |C2,

Z,

Y, ρ) closed-form Gaussian distributions

2. Sampling of parameters c2i,k

p(c2i,k |

Z,

M,Y, ρ) closed-form inverse-gamma distributions

3. Sampling of auxiliary variables Z

p(zi,k |C2,M,Y, ρ) closed-form gamma distributions

√
direct sampling for all conditional distributions

→ efficient sampling scheme, tailored for large datasets
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Numerical illustrationsg Éy

Synthetic multivariate multifractal image

→ sequence of heterogeneous 2D multifractal multiplicative cascades
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Temporal evolution of C21

– 3200×3200×50 pixel cube

– 50×50×50 patches of size 64× 64

– analysis scales j1 = 1, j2 = 2

– parameters ρi by cross-validation

Estimation setting
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Numerical illustrationsg Éy

Multifractality parameter: single realization

shown slices

IEEE TRANSACTIONS ON IMAGE PROCESSING 7

(a) 2D+1D MRW (left) and theoretical c2(x1, x2, t) (right)

(b) Estimates ĉ2

(c) K-means classification of ĉ2 and misclassification rates

Fig. 2: Estimation results for a temporal sequence of hetero-
geneous MRWs decomposed into 50⇥50⇥50 patches of size
26⇥26: prescribed c2 masks (a); estimates ĉ2 for two different
slices and overall histograms (b); classification labels obtained
by histogram thresholding and misclassification rates (c).

A. Synthetic multifractal image sequence

The scenario considered here is summarized in Fig. 2(a):
Each realization of the synthetic data set consists of a sequence
of 50 independent 2D multifractal random walks (MRW) of
size 3200 ⇥ 3200. A MRW is chosen here because its multi-
fractal properties mimic those of Mandelbrot’s celebrated log-
normal cascades [5] and for its ease of numerical synthesis.
Its multifractal spectrum is given by (4) with c1 > 0.5, c2 < 0
and cp = 0, p � 3 (cf., [55]). Each 2D MRW in the sequence,

indexed by t, has two distinct multifractal regions whose
geometry has been fixed for all t and comprises a background
with c2 = �0.02 that includes an ellipse for which c2 evolves
with t according to a piece-wise constant profile. An example
of a realization of heterogeneous 2D MRW (corresponding to
frame t = 30) is displayed in Fig. 2(a) (top left). Note that the
piece-wise constant evolution of c2 (in space and along t) is
intentionally chosen here as a limit test case for the robustness
of the proposed approach (which assumes a smooth evolution
of c2 in the data).

B. Experimental setup

A Daubechies’ mother wavelet with N = 2 vanishing
moments is used in the 2D DWT. The linear regression
weights wj in (5) are chosen proportional to nj , cf., e.g.,
[28], [37]. Following [35], the frequencies Jj in (10) (and,
hence, Jj in (12)) are restricted to 0 < ||!m|| < ⇡/4 for
all Bayesian estimators. The values of the GaMRF parameters
were set to (a

(1)
i , a

(2)
i ) = (10, 20) based on visual comparison

of preliminary results obtained for a range of values for
(a

(1)
i , a

(2)
i ). The hyperparameters of the independent IG priors

for IG were set to (↵0,i,�0,i) = (10�3, 10�3), which ensures
that they closely resemble a non-informative Jeffreys’ prior.
The estimation is performed on a decomposition of the cube
into Nx1

⇥Nx2
⇥Nt = 50⇥50⇥50 patches of size 26⇥26. The

estimation performance is quantified as the average m , bE[ĉ2],
the standard deviation (STD) s=(cVar[ĉ2])

1
2 and the root mean

squared error (RMSE) rms =
p

(m � c2)2 + s2, where bE and
cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.

C. Results

1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of
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HISTOGRAMS

LF → strong spatial & temporal variability with no possible identification

54%

IG → spatial and temporal variability but rough identification

45%

GaMRF → spatial and/or temporal coherence with clear identification

3%
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Numerical illustrationsg Éy

Multifractality parameter: single realization

estimates for C21
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intentionally chosen here as a limit test case for the robustness
of the proposed approach (which assumes a smooth evolution
of c2 in the data).

B. Experimental setup

A Daubechies’ mother wavelet with N = 2 vanishing
moments is used in the 2D DWT. The linear regression
weights wj in (5) are chosen proportional to nj , cf., e.g.,
[28], [37]. Following [35], the frequencies Jj in (10) (and,
hence, Jj in (12)) are restricted to 0 < ||!m|| < ⇡/4 for
all Bayesian estimators. The values of the GaMRF parameters
were set to (a

(1)
i , a

(2)
i ) = (10, 20) based on visual comparison

of preliminary results obtained for a range of values for
(a

(1)
i , a

(2)
i ). The hyperparameters of the independent IG priors

for IG were set to (↵0,i,�0,i) = (10�3, 10�3), which ensures
that they closely resemble a non-informative Jeffreys’ prior.
The estimation is performed on a decomposition of the cube
into Nx1

⇥Nx2
⇥Nt = 50⇥50⇥50 patches of size 26⇥26. The

estimation performance is quantified as the average m , bE[ĉ2],
the standard deviation (STD) s=(cVar[ĉ2])

1
2 and the root mean

squared error (RMSE) rms =
p

(m � c2)2 + s2, where bE and
cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.

C. Results

1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of

HISTOGRAMS

LF → strong spatial & temporal variability with no possible identification

54%

IG → spatial and temporal variability but rough identification

45%

GaMRF → spatial and/or temporal coherence with clear identification

3%

A Bayesian estimator for the multifractal analysis of multivariate images 29 / 37-



Numerical illustrationsg Éy
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(a) 2D+1D MRW (left) and theoretical c2(x1, x2, t) (right)

(b) Estimates ĉ2

(c) K-means classification of ĉ2 and misclassification rates

Fig. 2: Estimation results for a temporal sequence of hetero-
geneous MRWs decomposed into 50⇥50⇥50 patches of size
26⇥26: prescribed c2 masks (a); estimates ĉ2 for two different
slices and overall histograms (b); classification labels obtained
by histogram thresholding and misclassification rates (c).

A. Synthetic multifractal image sequence

The scenario considered here is summarized in Fig. 2(a):
Each realization of the synthetic data set consists of a sequence
of 50 independent 2D multifractal random walks (MRW) of
size 3200 ⇥ 3200. A MRW is chosen here because its multi-
fractal properties mimic those of Mandelbrot’s celebrated log-
normal cascades [5] and for its ease of numerical synthesis.
Its multifractal spectrum is given by (4) with c1 > 0.5, c2 < 0
and cp = 0, p � 3 (cf., [55]). Each 2D MRW in the sequence,

indexed by t, has two distinct multifractal regions whose
geometry has been fixed for all t and comprises a background
with c2 = �0.02 that includes an ellipse for which c2 evolves
with t according to a piece-wise constant profile. An example
of a realization of heterogeneous 2D MRW (corresponding to
frame t = 30) is displayed in Fig. 2(a) (top left). Note that the
piece-wise constant evolution of c2 (in space and along t) is
intentionally chosen here as a limit test case for the robustness
of the proposed approach (which assumes a smooth evolution
of c2 in the data).

B. Experimental setup

A Daubechies’ mother wavelet with N = 2 vanishing
moments is used in the 2D DWT. The linear regression
weights wj in (5) are chosen proportional to nj , cf., e.g.,
[28], [37]. Following [35], the frequencies Jj in (10) (and,
hence, Jj in (12)) are restricted to 0 < ||!m|| < ⇡/4 for
all Bayesian estimators. The values of the GaMRF parameters
were set to (a

(1)
i , a

(2)
i ) = (10, 20) based on visual comparison

of preliminary results obtained for a range of values for
(a

(1)
i , a

(2)
i ). The hyperparameters of the independent IG priors

for IG were set to (↵0,i,�0,i) = (10�3, 10�3), which ensures
that they closely resemble a non-informative Jeffreys’ prior.
The estimation is performed on a decomposition of the cube
into Nx1

⇥Nx2
⇥Nt = 50⇥50⇥50 patches of size 26⇥26. The

estimation performance is quantified as the average m , bE[ĉ2],
the standard deviation (STD) s=(cVar[ĉ2])

1
2 and the root mean

squared error (RMSE) rms =
p

(m � c2)2 + s2, where bE and
cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.

C. Results

1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of
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of 50 independent 2D multifractal random walks (MRW) of
size 3200 ⇥ 3200. A MRW is chosen here because its multi-
fractal properties mimic those of Mandelbrot’s celebrated log-
normal cascades [5] and for its ease of numerical synthesis.
Its multifractal spectrum is given by (4) with c1 > 0.5, c2 < 0
and cp = 0, p � 3 (cf., [55]). Each 2D MRW in the sequence,

indexed by t, has two distinct multifractal regions whose
geometry has been fixed for all t and comprises a background
with c2 = �0.02 that includes an ellipse for which c2 evolves
with t according to a piece-wise constant profile. An example
of a realization of heterogeneous 2D MRW (corresponding to
frame t = 30) is displayed in Fig. 2(a) (top left). Note that the
piece-wise constant evolution of c2 (in space and along t) is
intentionally chosen here as a limit test case for the robustness
of the proposed approach (which assumes a smooth evolution
of c2 in the data).
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A Daubechies’ mother wavelet with N = 2 vanishing
moments is used in the 2D DWT. The linear regression
weights wj in (5) are chosen proportional to nj , cf., e.g.,
[28], [37]. Following [35], the frequencies Jj in (10) (and,
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cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.

C. Results

1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of

HISTOGRAMS

LF → strong spatial & temporal variability with no possible identification

54%

IG → spatial and temporal variability but rough identification

45%

GaMRF → spatial and/or temporal coherence with clear identification

3%

A Bayesian estimator for the multifractal analysis of multivariate images 29 / 37-



Numerical illustrationsg Éy
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(a) 2D+1D MRW (left) and theoretical c2(x1, x2, t) (right)

(b) Estimates ĉ2

(c) K-means classification of ĉ2 and misclassification rates

Fig. 2: Estimation results for a temporal sequence of hetero-
geneous MRWs decomposed into 50⇥50⇥50 patches of size
26⇥26: prescribed c2 masks (a); estimates ĉ2 for two different
slices and overall histograms (b); classification labels obtained
by histogram thresholding and misclassification rates (c).

A. Synthetic multifractal image sequence

The scenario considered here is summarized in Fig. 2(a):
Each realization of the synthetic data set consists of a sequence
of 50 independent 2D multifractal random walks (MRW) of
size 3200 ⇥ 3200. A MRW is chosen here because its multi-
fractal properties mimic those of Mandelbrot’s celebrated log-
normal cascades [5] and for its ease of numerical synthesis.
Its multifractal spectrum is given by (4) with c1 > 0.5, c2 < 0
and cp = 0, p � 3 (cf., [55]). Each 2D MRW in the sequence,

indexed by t, has two distinct multifractal regions whose
geometry has been fixed for all t and comprises a background
with c2 = �0.02 that includes an ellipse for which c2 evolves
with t according to a piece-wise constant profile. An example
of a realization of heterogeneous 2D MRW (corresponding to
frame t = 30) is displayed in Fig. 2(a) (top left). Note that the
piece-wise constant evolution of c2 (in space and along t) is
intentionally chosen here as a limit test case for the robustness
of the proposed approach (which assumes a smooth evolution
of c2 in the data).

B. Experimental setup

A Daubechies’ mother wavelet with N = 2 vanishing
moments is used in the 2D DWT. The linear regression
weights wj in (5) are chosen proportional to nj , cf., e.g.,
[28], [37]. Following [35], the frequencies Jj in (10) (and,
hence, Jj in (12)) are restricted to 0 < ||!m|| < ⇡/4 for
all Bayesian estimators. The values of the GaMRF parameters
were set to (a

(1)
i , a

(2)
i ) = (10, 20) based on visual comparison

of preliminary results obtained for a range of values for
(a

(1)
i , a

(2)
i ). The hyperparameters of the independent IG priors

for IG were set to (↵0,i,�0,i) = (10�3, 10�3), which ensures
that they closely resemble a non-informative Jeffreys’ prior.
The estimation is performed on a decomposition of the cube
into Nx1

⇥Nx2
⇥Nt = 50⇥50⇥50 patches of size 26⇥26. The

estimation performance is quantified as the average m , bE[ĉ2],
the standard deviation (STD) s=(cVar[ĉ2])

1
2 and the root mean

squared error (RMSE) rms =
p

(m � c2)2 + s2, where bE and
cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.

C. Results

1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of
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piece-wise constant evolution of c2 (in space and along t) is
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1
2 and the root mean

squared error (RMSE) rms =
p

(m � c2)2 + s2, where bE and
cVar stand for the sample mean and variance, respectively,
evaluated over 100 independent realizations.
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1) Illustration for a single realization: We first illustrate
the performance of the different estimation methods for one
single realization of the above described sequence of synthetic
images. Fig. 2(b) plots estimates ĉ2 for frame t = 10 (first
row), and a slice along t for x2 = 25 (second row) together
with the histograms of estimates (third row) for LF, IG and
GaMRF (left, center and right column, respectively). The
corresponding theoretical values for c2 are plotted in Fig. 2(a).

Clearly, LF exhibits strong spatial and temporal variability
and fails to provide a smooth evolution of the multifractality in
the dataset. The Bayesian estimator IG with non-informative
prior improves the estimation accuracy with respect to LF and
enables the visual identification (in time and space) of the
zones with different multifractality, yet estimates obtained with
IG still display strong variability and their histogram does not
reveal the existence of three distinct zones of multifractality
in the data. In contrast to these univariate estimators, the
proposed GaMRF estimator provides more satisfactory results
with increased spatial and temporal coherence and signifi-
cantly reduced variability of the estimates. In particular, the
estimates obtained with GaMRF lead to histograms in which
the three different values for c2 in the data are reflected as
pronounced and well separated peaks.

A more quantitative analysis of these results is proposed
in Fig. 2(c), which shows the results of a classification of
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Fig. 3: Estimation performance for heterogeneous 2D MRWs:
mean (first row), standard deviation (second row) and root-
mean square error (third row) in (a) spatial direction x1 (t =
10, x2 = 25) and (b) temporal direction t (x1 = 25, x2 = 25).

in Tab. I. First, a comparison of the average of estimates for
the Bayesian estimators leads to the conclusion that, despite
the departure of the scenario considered from the assumption
of slow evolution for c2, the GaMRF estimator yields average
profiles close to that of IG. Only close to sharp transitions
for the value of c2 does GaMRF introduce some bias due
to the smoothing effect of the prior. Yet, this effect remains
confined to ±3 neighboring patches and has little impact on
the overall bias reported in Tab. I. Estimates obtained with LF
are found to have the largest (by a factor of 3) bias. Second,
while the Bayesian estimator IG with non-informative prior
already yields a remarkable reduction of variability compared
to LF (STD values are divided by 4), the proposed multivariate
GaMRF estimator further and dramatically decreases STD
to values that are more than one order of magnitude below
those of LF. This is also reflected by the overall STD and
RMSE values reported in Tab. I, which are more than one
order of magnitude better for GaMRF than for LF. Due to
the bias introduced by GaMRF close to sharp transitions of
the value of c2, local RMSE values range from 25% (close
to transitions) to only 4% (in homogeneous areas) of those
of LF. Finally, note that these significant performance gains
of GaMRF are achieved at very reasonable computational
cost. As an example, the analysis of a 1024 ⇥ 1024 ⇥ 50
data cube using patches of size 64 ⇥ 64 takes about 100
seconds for GaMRF on a standard desktop computer 2, which
is only 4 times larger than what the LF method requires.
The cost of IG is similar to that of GaMRF. Note that the
direct space-domain statistical model of Section III-A leads to
two orders of magnitude larger computational cost (and, by
construction, similar performance as IG) [35]. Overall, these
results demonstrate the clear practical benefits of the proposed
procedure for the multifractal analysis of multivariate images.

2Using Matlab, a 3.40 Ghz Intel Core i7 processor and 8GB RAM

LF IG GaMRF
|m � c2| 0.0057 0.0017 0.0023

s 0.038 0.011 0.0016
rmse 0.039 0.011 0.0029

TABLE I: Absolute values of bias |m�c2|, standard deviations
s and RMSE values rmse for the different estimators (results
obtained for 100 independent realizations.

VII. APPLICATION TO REAL-WORLD IMAGES

Finally we illustrate the application of the proposed joint
estimator for the multifractality parameter to two real-world
multivariate remote sensing images of different natures: a
hyperspectral (HS) image, and a multi-temporal (MT) image.

A. Application to a hyperspectral image

The HS image under study corresponds to a forested area
near a city and was acquired by the Hyspex hyperspectral
scanner during the Madonna project [55]. It contains 960 ⇥
1952 pixels with a spatial resolution of 0.5 meters and 160
spectral bands ranging from the visible to near infrared. In
our numerical experiment, the 80 last bands are analyzed. Each
band is decomposed into 29⇥60 patches of size 64⇥64 pixels,
with 50% overlap, resulting in a decomposition into 29⇥60⇥
80 patches indexed by (x1, x2, k�), where k� stands for the
spectral dimension. Overlapping patches are chosen here in
order to increase the spatial resolution and to illustrate the
robustness of the model (even if the independence assumption
between patches is clearly violated when they overlap, the
method seems to be quite robust to these dependencies).

The subplots in Fig. 4 report the estimates for the multi-
fractality parameter c2 provided by LF, IG and GaMRF for
two representative spectral bands (c) (the bands 87 and 114,
which are plotted in (b)) as well as for a slice along the spectral
dimension (d) (the corresponding 64 ⇥ 1962 ⇥ 80 portion of
the HS cube is indicated by a red frame in (a)). A visual
inspection of the results for the bands 87 and 114 reveals that
the strong spatial variability of the estimates obtained with
LF prevents the identification of distinct regions in the image
(with the exception perhaps of the city in the left bottom corner
which yields clusters of strongly negative c2). The estimator IG
yields better spatial coherence and clearly improves over the
estimates obtained with LF (see [35] for a similar experiment
for one single spectral band using the model (9-10), leading
to equivalent conclusions). Yet, the variability within visually
homogeneous zones of the dataset (e.g., the forested region) is
still important. In comparison with IG, and a fortiori with LF,
the proposed GaMRF method further and dramatically reduces
the variability within presumably homogeneously multifractal
zones, inducing strong spatial coherence, which reinforces
the contrast between regions of different multifractalities and
visually sharpens their borders. As a result, these estimates
can potentially reveal hidden underlying structures in the data
set. Despite the absence of a ground truth for this data set
we can, for instance, observe that the forested area in the
right half of the image is homogeneous (with c2 ⇠ �0.05)
in the spectral band k� = 114, while it is composed of a
background (where c2 ⇠ �0.05) and scattered clusters (where

GaMRF:

→ smoothing of sharp transitions

→ reduction of STD/RMSE

LF IG GaMRF

|bc21
| 0.0057 0.0017 0.0023

sc21
0.038 0.011 0.0016

rc21
0.039 0.011 0.0029

STD / RMSE:

– IG ∼ 4 times below LF

– GaMRF ∼ 10 times below LF
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Multifractal analysis and hyperspectral imaging

I Hyperspectral (HS) imaging

- observation of a scene at many different spectral bands ∼ 100

- growing interest for spatial information
. (ever increasing spatial resolution of sensors . . . )

I Multifractal analysis for textural information?

X limited attempts for HS ∼ fractal dimensions / H [Dong’08,Sun’06,Yin’12]

−→ Multifractal features for textural information

−→ Illustration for multivariate Bayesian estimation for multifractality
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Analyzed hyperspectral image

I Madonna hyperspectral dataset [Sheeren’11]

- dataset acquired over Villelongue by Hyspex hyperspectral scanner

- 960× 1952 pixels with spatial resolution of 0.5m

- 160 spectral bands ranging from visible to near infrared
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Does the model fit real-world data?

[Combrexelle-WHISPERS’15],

[Sheeren’11]
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Does the model fit real-world data?
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4.4 - Numerical experiments 129

(a) Forested are of interest (b) QQ-plot of log L(1, k)

(c) Sample covariance (d) Covariance model %j,✓ (e) Radial evolution

Figure 4.3: Fitting between data and proposed statistical model: Forested area of interested (a)

(64 ⇥ 64 pixels), quantile-quantile plot (b) of the empirical distributions of associated log-leaders

log L(j, k) at scale j = 1 (subband k� = 100); sample covariance (c), averaged over contiguous

subbands k� 2 J100, 105K, parametric covariance (d); (e) compares the radial evolution of the model

(blue) to the sample covariance (red) of log-leaders at scale j = 1.

4.4.3 Spectral evolution of multifractal features for hyperspectral images

For this experiment, we are interested in the evolution of multifractal properties across spectral
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Does the model fit real-world data?
[Combrexelle-WHISPERS’15],[Sheeren’11]

sample covariance and model (256× 256):

128Chapter 4 - Application to real-word data: Illustration for hyperspectral images

distribution. Second, when comparing in (e) the radial evolution of the sample covariance (c) and

the proposed covariance model (d), the model is found to provide an overall safisfactory fit. These

first results hence indicate that the proposed model is relevant for certain areas of the hyperspectral

image under analysis. In what follows, we will apply the Bayesian estimation procedures to di↵erent

regions and spectral bands of the hyperspectral image without systematically assessing the fit of the

statistical model. This point would require the development of appropriate model selection statistical

procedures (see Chapter 5).

(a) Forested area of interest (b) QQ-plot of log L(2, k)

(c) Sample covariance (d) Covariance model %j,✓ (e) Radial evolution

Figure 4.2: Fitting between data and proposed statistical model: Forested area of interest (256⇥256

pixels) (a), quantile-quantile plot (b) of the empirical distributions of associated log-leaders log L(j, k)

at scale j = 2 (subband k� = 100); sample covariance (c), averaged over contiguous subbands

k� 2 J100, 105K, parametric covariance (d); (e) compares the radial evolution of the model (blue) to

the sample covariance (red) of log-leaders at scales j = 2, 3.
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Spectral evolution of multifractal features

I Multifractal features vs. reflectance [Combrexelle-WHISPERS’15]
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Spatio-spectral evolution of multifractal features: C21

I Spatio-spectral evolution of C21
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Spatio-spectral multifractal features: C21

I Histograms of C21 estimates (kλ = 114)140Chapter 4 - Application to real-word data: Illustration for hyperspectral images
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Figure 4.8: Discrimination power of estimation procedures for c2: histograms (a) and Fisher linear

discriminant criteria (b) for estimators of c2 obtained by LFw ( ), IG/N ( ) and GMRF/SAR

( ) for subband k� = 114.

I Fisher linear discriminant criteria of C21 estimates (kλ = 114)
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Conclusions

Multifractal analysis

– tool for global, geometric description of local regularity fluctuations
h(t

0
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– assessment of statistics / dependence beyond 2nd order
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– estimation via multifractal formalism using wavelet leaders

– signal & image processing tool used in large panel of applications

e.g., physics, financial markets, geology, biology and biomedical (gene
expression, fMRI, . . . ), Art investigation, network traffic, . . .
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Conclusions

Multifractal analysis: Bayesian estimation

– Gaussian random field model for log-leaders

– Whittle approximation & data augmentation
→ data augmented Fourier domain likelihood (∼ CN )

Multivariate model

– GaMRF joint prior for c2 of different data components

→ efficient inference via a Gibbs sampler (large data sets)
→ significantly improved estimation performance (gain: factor ∼ 10)
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g Éy

herwig.wendt@irit.fr

www.irit.fr/∼Herwig.Wendt/

A Bayesian estimator for the multifractal analysis of multivariate images 37 / 37-



g Éy
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Scale-free dynamics and infraslow macroscopic brain activity
model 1/f β ⊂ self-similar ⊂ multifractal

analysis Fourier −→ wavelets −→ wavelet leaders
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fMRI data: Experimental design and acquisition
Verbal n-back working memory task (n = 3).
– serially presented upper-case letters (displayed 1s, separation 2s)

→ Is letter same as that presented 3 stimuli before?

● N-Back paradigm
➢ Retrieve repeated letters among a sequence

➢ Letters serially presented (1s apart one another)

➢ 4 conditions of increasing difficulty: 

 0-Back         1-Back             2-Back                  3-Back

            A C X F       C D D R          C D E D H          T D E K D Z

➢ Stimulus sequence:

Inst.

0b

Inst.

1b

Session 1 x 4

Inst.

0b

Inst.

2b

Session 2 x 4

Inst.

0b

Inst.

3b

Session 3 x 4

N-back Paradigm

– each run: alternating sequence of 8 blocks
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Ciuciu et al. Spatially regularized multifractal analysis for fMRI Data 9 / 9-

Data acquisition.
– resting-state fMRI images first: participant at rest, with eyes closed
– 543 scans (9min10s) / 512 scans (8min39s) for rest / task

– fMRI data acquisition at 3 Tesla (Siemens Trio, Germany)
– multi-band GE-EPI (TE=30ms, TR=1s, FA=61, MB=2) sequence
. (CMRR, USA), 3mm isotropic resolution, FOV of 192×192×144mm3

Shown results: (−c2) maps.
– for single subject (arbitrarily chosen from 40 participants).

Back
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Resting-state analysis ((−c2) maps)

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF

LF:
- poor estimation (var!)

IG & GaMRF:
- estimation var decrease

- increase of MF in DMN

GaMRF:
- enhanced MF contrast

scale-free dynamics in
DMN for resting-state
fMRI reported before, but
for H only [He JNS’11].

−→ evidence for richer,
MF resting state brain
dynamics
. Back

−→ significant MF in default mode network (DMN)
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Task analysis: 3-back run ((−c2) maps)

Left sagittal Coronal Right sagittal Axial

LF

IG

GaMRF

LF:
- poor estimation (var!)

IG & GaMRF:
- estimation var decrease

overall increase in MF
during task
[Ciuciu FPhys’12]

GaMRF:
- significant MF in
- bilateral parietal regions
belonging to WMN
- occipital cortex (visual)
- cerebellum (sensory)
- involved in task

Back

−→ overall MF increase; working memory network (WMN), visual, sensory.
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Log-cumulants
[Castaing’93]

- For certain classes of processes: Back

- IE`(j , ·)q = IEeq ln `(j,·) = bq2j ζ(q)

⇒ 2nd characteristic function of ln `(j , ·):

Cp(j) = Cump[ ln `(j , ·) ]: cumulant of order p ≥ 1

ln IEeq ln `(j,·) =
∑

p

Cp(j)
qp

p!
= ln bq + ζ(q) ln 2j

⇒ ∀p ≥ 1 : Cp(j) = cp0 + cp1 ln 2j

⇒ polynomial expansion

ζ(q) =
∑∞

p=1 cp1
qp

p!
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g Éy

Log-cumulants
[Castaing’93]

- For certain classes of processes: Back

- IE`(j , ·)q = IEeq ln `(j,·) = bq2j ζ(q)

⇒ 2nd characteristic function of ln `(j , ·):

Cp(j) = Cump[ ln `(j , ·) ]: cumulant of order p ≥ 1

ln IEeq ln `(j,·) =
∑

p

Cp(j)
qp

p!
= ln bq + ζ(q) ln 2j

=
∞∑

p=1

cp0

qp

p!
︸ ︷︷ ︸

ln bq

+
∞∑

p=1

cp1

qp

p!
︸ ︷︷ ︸

ζ(q)

ln 2j

⇒ ∀p ≥ 1 : Cp(j) = cp0 + cp1 ln 2j

⇒ polynomial expansion

ζ(q) =
∑∞

p=1 cp1
qp

p!

A Bayesian estimator for the multifractal analysis of multivariate images 42 / 37-



g Éy

Summary: log-wavelet leaders statistical model

Linear regression 1

V̂ar [x ] ∼ N (θ2 + jθ1, σ
2) x ∼ ln LX (j , k) θ ∼ c2

– independence assumption. marginals?
√ single homogeneous large size data
X small size data piece

”Natural” model 1
p(x |θ) = Nx (0,Σθ) ρθ(τ) 7→ Σθ

11ρθ(τ) = θ1ρ1(τ) + θ2ρ2(τ) covariance model

– ”direct” connection with cascades
X computation: Σ−1

θ ? admissible c2?
X no conjugate priors for θ1, θ2→

Whittle approximation 1
p(x |θ) ≈∏

m fθ(ωm)−1exp(−y∗mym/fθ(ωm))
11y = DFT (x)
11fθ(ω) = θ1f1(ω) + θ2f2(ω) PSD model

√computation
Gibbs V.1
X no conjugate priors for θ1, θ2

. → Metropolis-Hasting moves→

Fourier domain model 1
p(y |θ) = CN y (0, diag(fθ(ωm)))

→ data y = DFT (x) replace data x

– complex Gaussian & factorized in ym
X Var (ym) ∝ (θ1 + θ2)
. → no conjugate priors for θ1, θ2→

Data augmented model using latent variables µ
p(y ,µ|θ) = CN y (µ, θ1diag(f1(ωm)))
. ×CNµ(0, θ2diag(f2(ωm)))
. p(y |θ) =

∫
p(y ,µ|θ)dµ

√θ1 and θ2 are separable
. → conjugate IG priors for θ1, θ2

Gibbs V.2 → fast sampling from .
. closed-form conditionals

Back
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Model: time-domain statistical model of log-leaders

1. Marginal distribution of log-leaders approximated by Gaussian

l(j , ·, ·) = ln L(j , ·, ·) ∼ N
(
·, c0

2 + c2 ln 2j )
2. Intra-scale parametric covariance model

Cov[l(j , k), l(j , k + ∆r)] ≈ %j(∆r ; v), v = (c2, c
0
2 )

I Likelihood of centered log-leaders lj stacked in l = [lTj1 , ..., l
T
j2 ]T

→ scale-wise product of Gaussian likelihoods

p(l|v) ∝
j2∏

j=j1

|Σj,v |−
1
2 exp

(
−1

2
lTj Σ−1

j,v lj

)
, with Σj,v induced by %j(∆r ; v)

X evaluation of p(l|v) numerically instable

1 [TIP15]

Back

A Bayesian estimator for the multifractal analysis of multivariate images 44 / 37-



g Éy

Model: Whittle approximation
I Evaluation of the Gaussian likelihood in the spectral domain

pW (l|v) ∝
j2∏

j=j1

|Γj,v |−1 exp
(
−yH

j Γ−1
j,v y j

)
- y j Fourier coefficients of lj

- Γj,v parametric spectral density associated with %j(∆r ; v)

→ closed-form expression via Hankel transform

Γj,v = c2 F1,j + c0
2 F2,j , Fi,j = diag(fi,j)

I Estimation of v embedded in a Bayesian framework

- space-domain likelihood (approximated) + common priors

X non-standard posterior distribution → acceptance/reject moves
1 [TIP15]

Back
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Model: Fourier-domain statistical model
I Whittle approximation

pW (l|v) ∝
j2∏

j=j1

|Γj,v |−1 exp
(
−yH

j Γ−1
j,v y j

)
- y j Fourier coefficients of lj

- Γj,v = c2 F1,j + c0
2 F2,j parametric spectral density

m
I Generative model for y = [yT

j1
, ..., yT

j2
]T

p(y |v) ∝ |Γv |−1 exp
(
−yHΓ−1

v y
)

- complex Gaussian model y ∼ CN (0,Γv )

- Γv = c2F 1 + c0
2 F 2 and F i = block(F i,j1 , . . . ,F i,j2 )

X model non-separable in (c2, c
0
2 )

Back
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Model: Reparametrization
I Non-separable constraints on (c2, c

0
2 )

v ∈ A = {(c2, c
0
2 ) ∈ R−? × R+

? |Γv = c2F1 + c0
2 F2 positive-definite}

I Design of a linear diffeomorphism ψ

1 mapping joint constraints into independent positivity constraints

ψ : A → R+2
?

: v 7→ ψ(v) , v
2 yielding more convenient likelihood

p(y |v) ∝ |Γv |−1 exp
(
−yHΓ−1

v y
)

with

for v ∈ R+2
?


Γv = θ̃1F̃ 1 + θ̃2F̃ 2 positive-definite

θ̃i F̃ i positive-definite
→ separability of the likelihood via data augmentation

Back
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Model: Data augmentation
I Definition of an augmented model

y |µ, θ̃2 ∼ CN (µ, θ̃2F̃ 2) observed data

µ|θ̃1 ∼ CN (0, θ̃1F̃ 1) hidden mean

with

p(y |v) =

∫
p(y ,µ|v)dµ

I Virtues of the augmented likelihood p(y ,µ|v)

p(y ,µ|v) ∝ θ̃2
−NY exp

(
− 1

θ̃2

(y−µ)H F̃
−1
2 (y−µ)

)
× θ̃1

−NY exp
(
− 1

θ̃1

µH F̃
−1
1 µ
)

√
separable in (θ̃1, θ̃2)

√
conjugate to inverse-gamma priors

Back
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MCMC algorithm

I Strategy of Gibbs sampler

- iterative sampling according to conditional laws

- non-standard conditional laws → Metropolis-within-Gibbs

- computation of acceptance ratio at each iteration

rc2 =

√
det Σ(v (t))

det Σ(v (?))
×

j2∏
j=j1

exp

(
−1

2
lTj

(
Σj,v (v (?))−1 −Σj,v (v (t))−1

)
lj

)
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Time block wise estimation (2D+time)
I Synthetic multifractal time series: Multifractal Random Walk

∼ Mandelbrot’s celebrated multiplicative cascades

I collection of 32× 32 time series of length N = 214

- piece-wise constant c2 ∈ {−0.02,−0.04} along time

X
(m

1
,m

2
)
(t)

0

t

0

0.25

0.5

0.75

1

c
2
(t)

-0.04 -0.02

I Comparison of estimators for c2

I nS = 22,...,6 windows of lengths L = {212, 211, 210, 29, 28}
- LF – univariate linear regression based estimation
- IG – univariate Bayesian estimation [TIP15,ICASSP16]

- GaMRF – joint Bayesian estimator
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Time block wise estimation (2D+time)
estimates for c2: temporal evolution at slice m2 = 16
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Time block wise estimation (2D+time)

estimates for c2: spatial cross-section at t = 0.5
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Time block wise estimation (2D+time)

RMSE (50 independent realizations)

nS / L 4 / 212 8 / 211 16 / 210 32 / 29 64 / 28

LF 0.020 0.026 0.037 0.058 0.102

IG 0.011 0.013 0.018 0.024 0.036

GaMRF 0.008 0.008 0.009 0.009 0.013
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