Weighted Acyclicity Constraint for the Bayesian Network Structure Learning Problem

Simon de Givry \(^1\), George Katsirelos \(^1\), Fulya Ural \(^2\)

\(^1\)INRA MIAT

\(^2\)Grenoble INP - ENSIMAG

1 June 2018

\(^1\)This work has been partially supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) funded by the French program Investissement d’avenir.
Bayesian Network Structure Learning

Bayesian network
is a probabilistic graphical model that captures the conditional dependencies between a set of random variables via a directed acyclic graph (DAG).

Application areas
include gene regulatory networks [Allouche et al., 2013], risk analysis [Trucco et al., 2008] and image processing [Luo et al., 2005].
Learning a Bayesian network from discrete data is known to be an NP-Hard problem [Chickering et al., 2004] with an exponential search space of DAGs.

Many solution approaches

- dynamic programming [Silander and Myllymäki, 2006, Fan and Yuan, 2015]
- constraint programming [Van Beek and Hoffman, 2015]
- propositional calculus [Cussens, 2008]
- breadth-first branch-and-bound search [Campos and Ji, 2011, Fan et al., 2014]
- integer linear programming [Bartlett and Cussens, 2017].
Our Interpretation of the BNSL

CAST THE BNSL AS A COMBINATORIAL OPTIMIZATION PROBLEM

FORMULATE IT AS A WEIGHTED CONSTRAINT SATISFACTION PROBLEM

FIND AND IMPLEMENT IDEAS TO SOLVE IT FASTER
Score-and-Search Method

Cost = 12
Acyclic? NO

Cost = 17
Acyclic? YES

Cost = 13
Acyclic? YES

Variable	Parent Set	Score
0	{1, 2}	2
{1}	4	
{2}	3	
{}	10	

1 | {0, 2} | 1
| {0} | 2
| {2} | 6
| {} | 8

2 | {0, 1} | 1
| {0} | 4
| {1} | 7
| {} | 9
A Constraint Satisfaction Problem [Cooper and Schiex, 2004] is a triple \(\langle X, D, C \rangle \).

- \(X \): set of \(n \) variables \(X = \{1, \ldots, n\} \).
- \(D \): set of domains \(D = \{D_i : i \in X\} \).
- \(C \): set of constraints.

Each constraint \(c_S \in C \) is defined over a set of variables \(S \subseteq X \) (its scope) by a subset of the Cartesian product \(\prod_{i \in S} D_i = \ell(S) \). The cardinality \(|S| \) is the arity of the constraint \(c_S \).

A tuple \(t \in \ell(X) \) is a solution iff it satisfies all the constraints in \(C \).
A cost function is defined over the scope S of the constraint c_S to which it corresponds. It associates a cost to each tuple $t \in \ell(S)$.

- c_\emptyset: the nullary cost function = constant cost.
- c_i: the unary cost function on variable i.
- c_{ij}: the binary cost function on variables i and j.

<table>
<thead>
<tr>
<th>x</th>
<th>c_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>y</th>
<th>c_y</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>c_{xy}</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>a</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>3</td>
</tr>
</tbody>
</table>

\[\begin{align*}
\text{Variable } & \quad \text{Ordering} \\
X & \quad a \\
Y & \quad b
\end{align*} \]
Weighted Constraint Satisfaction Problem

Weighted Constraint Satisfaction Problem (WCSP) is a quadruple $\langle X, D, C, m \rangle$ where C is a set of cost functions and m is the upper bound [Cooper et al., 2010].

Find a solution such that the sum

$$c_\emptyset + \sum_{i \in X} c_i + \sum_{ij \in X^2} c_{ij}$$

- is minimized,
- is less than the upper bound m.

Levels of Local Consistency

Node Consistency

A WCSP is *node consistent* (NC) [Cooper et al., 2010] if for any variable \(i \in \{1, \ldots, n\} \),

1. \(\forall a \in D_i, c_i(a) \oplus c_{\emptyset} < m \)
2. \(\exists a \in D_i \) such that \(c_i(a) = 0 \)

(Soft) Arc Consistency

A binary WCSP is arc consistent if for all \(c_{xy} \in C \) we have:

\[
\forall a \in D_x, \exists b \in D_y \text{ such that } c_{xy}(a, b) = 0.
\]
Levels of Local Consistency

Bool(P)

If \(P = \langle X, D, C, m \rangle \) is a WCSP, then \(\text{Bool}(P) = \langle X, D, \overline{C} \rangle \) is the classical CSP where, for all scopes \(S \neq \emptyset \), \(\langle S, R_S \rangle \in \overline{C} \) iff \(\exists \langle S, c_S \rangle \in C \), where \(R_S \) is the relation defined by \(\forall x \in \ell(S) (t \in R_S \iff c_S(t) = 0) \).

Virtual Arc Consistency

A WCSP \(P \) is virtual arc consistent (VAC) if \(\text{Bool}(P) \) is arc consistent.
Bayesian Network Structure Learning as a WCSP

<table>
<thead>
<tr>
<th>Set</th>
<th>Variable</th>
<th>Domain</th>
<th>Unary Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>P</td>
<td>P_i</td>
<td>Some subsets of $X \setminus i$.</td>
<td>Scores.</td>
</tr>
<tr>
<td>E</td>
<td>E_{ij}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>B_{ij}</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1</td>
<td>m if $i = j$, 0 otherwise.</td>
</tr>
</tbody>
</table>

Table: Decision variables.
Constraints

- **\(P_i \) and \(E_{ij} \):** For all \(i, j \in X \), we have \(E_{ji} \Leftrightarrow (j \in P_i?) \).

- **\(E_{ij} \) and \(B_{ij} \):** For all \(i, j \in X \), we have \(E_{ij} \Rightarrow B_{ij} \).

- **\(B_{ij} \)'s:** For all \(i, k, j \in X \), we have \((B_{ik} \land B_{kj}) \Rightarrow B_{ij}\), which is equivalent to \(B_{ik} \lor B_{kj} \lor B_{ij} \).

- **Enforcing acyclicity:** For all \(i, j \in X \), we have \(B_{ii} = 0 \).

<table>
<thead>
<tr>
<th>(j \in P_i?)</th>
<th>(E_{ji})</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>(m)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(E_{ij}) vs (B_{ij})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E_{ij})</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>0</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>

Table: Table costs.
A variable $x \in X$ is strictly arc consistent if there exist values $a \in D_x$ and $b \in D_y$ for all $y \in nb(x)$ such that:

- $c_x(a) < c_x(i) \ \forall i \in D_x \setminus a$
- $c_{xy}(a, b) < c_{xy}(i, j) \ \forall (i, j) \in \ell(\{x, y\}) \setminus (a, b)$.

$x = a$ and $y = b$ is obviously the optimal assignment.
Strict Arc Consistency

A variable $x \in X$ is *strictly arc consistent* if there exist values $a \in D_x$ and $b \in D_y$ for all $y \in nb(x)$ such that:

- $c_x(a) < c_x(i) \ \forall i \in D_x \setminus a$
- $c_{xy}(a, b) < c_{xy}(i, j) \ \forall (i, j) \in \ell({x, y})\setminus(a, b)$.
[Savchynskyy et al., 2013] suggests a method for energy minimization for Markov random fields:

- Divide the problem into two: easy and difficult, to be treated by convex and combinatorial techniques, respectively.

- Easy part is strictly arc consistent, while the difficult part is the rest.

- Use a similar idea for the $Bool(P)$ to improve the choice of variables during Branch-and-Bound.
Experiments

- ToulBar2: an open-source exact solver for cost function networks that solves various combinatorial optimization problems.

- 60 instances from [Haller et al., 2018]

- Time limit: 3600 seconds
Numerical Results

![Graph showing numerical results before and after some optimization. The x-axis represents the number of instances, and the y-axis represents time in seconds. The graph compares two scenarios: "BEFORE" and "AFTER." The "BEFORE" scenario shows a steady increase in time as the number of instances increases, while the "AFTER" scenario shows a significant improvement, especially after instance 10.]
Future Work

- **Heuristics:**
 - Stronger detection of tractable part of Bool(P)

- **BNSL:**
 - Improve complexity of each iteration of VAC
 - Dynamic computation of parent sets (exponentially large domains)
References

Allouche, David and Cierco-Ayrolles, Christine and De Givry, Simon
and Guillermín, Gérald and Mangin, Brigitte and Schiex, Thomas and
Vandel, Jimmy and Vignes, Matthieu (2013)
A panel of learning methods for the reconstruction of gene regulatory
networks in a systems genetics context

Bartlett, Mark and Cussens, James (2017)
Integer linear programming for the Bayesian network structure
learning problem
Artificial Intelligence 244, 45 – 678.

Campos, Cassio P de and Ji, Qiang (2011)
Efficient structure learning of Bayesian networks using constraints

Chickering, David Maxwell and Heckerman, David and Meek, Christopher (2004)
Large-sample learning of Bayesian networks is NP-hard
References

Cooper, Martin and Schiex, Thomas (2004)
Arc consistency for soft constraints
Artificial Intelligence 154(1-2), 199 – 227.

Cooper, Martin C and De Givry, Simon and Sánchez, Martí and Schiex, Thomas and Zytnicki, Matthias and Werner, Tomáš (2010)
Soft arc consistency revisited
Artificial Intelligence 174(7-8), 449 – 478.

Cussens, James (2008)
Bayesian network learning by compiling to weighted MAX-SAT

Fan, Xiannian and Yuan, Changhe and Malone, Brandon M (2014)
Tightening Bounds for Bayesian Network Structure Learning
AAAI 4, 2439 – 2445.
References

References

Silander, Tomi and Myllymäki, Petri (2006)
A simple approach for finding the globally optimal Bayesian network structure
Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence 445 – 452.

Trucco, Paolo and Cagno, Enrico and Ruggeri, Fabrizio and Grande, Ottavio (2008)
A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation
Reliability Engineering & System Safety 93(6), 845 – 856.

Van Beek, Peter and Hoffmann, Hella-Franziska (2015)
Machine learning of Bayesian networks using constraint programming
The End