# FAST BAYESIAN NETWORK STRUCTURE LEARNING WITH QUASI-DETERMINISM SCREENING

Journées Francophones sur les Réseaux Bayesiens, INRA Toulouse

Thibaud Rahier, Sylvain Marié, Stéphane Girard, Florence Forbes May 31, 2018

INRIA - Schneider Electric





- I Bayesian network structure learning
- II Determinism and Bayesian networks
- III Structure learning with (quasi-)determinism screening
- IV Experiments
- V Discussion

## I - Bayesian network structure learning

II - Determinism and Bayesian networks

III - Structure learning with (quasi-)determinism screening

IV - Experiments

V - Discussion

## **I-1. BAYESIAN NETWORKS**

# Setting

- $\cdot \ (X_1,\ldots,X_n)$ : tuple of categorical random variables
- $\cdot\,$  D: dataset containing M i.i.d instances of  $(X_1,\ldots,X_n)$

## **I-1. BAYESIAN NETWORKS**

# Setting

- $\cdot \ (X_1,\ldots,X_n)$ : tuple of categorical random variables
- $\cdot\,$  D: dataset containing M i.i.d instances of  $(X_1,\ldots,X_n)$

## Bayesian network: $B = (G, \theta)$ where

· G = (V, A): DAG structure with

- $\cdot \ V = \{1, \ldots, n\}$  vertices associated to the n variables
- $\cdot \ A \subset V^2$  set of arcs
- π<sub>i</sub> the set of parents of i in G
   Factorization of the joint distribution:

$$P(X_1,\ldots,X_n)=\prod_{i=1}^n P(X_i|\mathbb{X}_{\pi_i})$$

·  $\theta$ : parameters of the local P(X<sub>i</sub>| $\mathbb{X}_{\pi_i}$ )

#### Score&search-based BN structrure learning

For a scoring function  $s:\mathsf{DAG}_V\to\mathbb{R},$   $\mathsf{BNSL}_s$  comes down to:

 $\hat{G} \in \underset{G \in DAG_{V}}{argmax} s(G)$ 

## I-2. BAYESIAN NETWORK STRUCTURE LEARNING

## Score&search-based BN structrure learning

For a scoring function  $s:\mathsf{DAG}_V\to\mathbb{R},$   $\mathsf{BNSL}_s$  comes down to:

 $\hat{G} \in \underset{G \in DAG_{V}}{argmax} s(G)$ 

#### Some scoring functions

Most scoring functions are based on the log-likelihood  $l(\theta : D)$ :

$$l(\theta:D) = \sum_{m=1}^{M} \sum_{i=1}^{n} log\left(\theta_{x_i[m]|x_{\pi_i}[m]}\right)$$

As the MaxLogLikelihood score (MLL), (leads to complete graphs):

$$s^{MLL}(G:D) = \max_{\theta \in \Theta_G} l(\theta:D)$$

In practice, we rather use regularized scores such as BIC, AIC or BDe

#### I - Bayesian network structure learning

#### II - Determinism and Bayesian networks

III - Structure learning with (quasi-)determinism screening

IV - Experiments

V - Discussion

#### Conditional Shannon entropy

The conditional Shannon entropy of  $X_i$  knowing  $X_j$  is defined as

$$H(X_i|X_j) = -\sum_{x_i,x_j} p(x_i,x_j) \log(p(x_i|x_j))$$

 $H(X_i | X_j) = 0$  if and only if the value of  $X_i$  is entirely determined by the value of  $X_i$ 

#### Conditional Shannon entropy

The conditional Shannon entropy of  $X_i$  knowing  $X_j$  is defined as

$$H(X_i|X_j) = -\sum_{x_i,x_j} p(x_i,x_j) \log(p(x_i|x_j))$$

 $H(X_i|X_j)=0$  if and only if the value of  $X_i$  is entirely determined by the value of  $X_i$ 

#### Linking the entropy with MLL score

The MLL score can be rewritten as

$$s^{MLL}(G:D) = -M\sum_{i=1}^n H^D(X_i|X_{\pi_i})$$

## Definitions: determinism and quasi-determinism

The relationship  $X_i \to X_j$  is deterministic wrt D iff

 $\mathsf{H}^\mathsf{D}(\mathsf{X}_i|\mathsf{X}_j)=0$ 

The relationship  $X_i \rightarrow X_j$  is  $\epsilon$ -quasi deterministic wrt D iff

 $H^{D}(X_{i}|X_{j}) \leq \epsilon$ 

#### Definition: deterministic graphs

A DAG G is deterministic wrt D iff for every  $i \in V$  st  $\pi_i \neq \emptyset$ ,

 $\mathsf{H}^{\mathsf{D}}(\mathsf{X}_{i}|\mathsf{X}_{\pi_{i}})=0$ 

(analogous definition for quasi-deterministic DAGs)

#### Proposition 1: Deterministic trees and the MLL score

If  $T\in \mathsf{DAG}_V$  is a deterministic tree (single-parented DAG) wrt D then T is a solution of  $\mathsf{BNSL}_{\mathsf{MLL}}$ :

$$s^{MLL}(T:D) = \max_{G \in DAG_V} s^{MLL}(G:D)$$

#### Proposition 1: Deterministic trees and the MLL score

If  $T\in \mathsf{DAG}_V$  is a deterministic tree (single-parented DAG) wrt D then T is a solution of  $\mathsf{BNSL}_{\mathsf{MLL}}$ :

$$s^{MLL}(T:D) = \max_{G \in DAG_V} s^{MLL}(G:D)$$

#### Proposition 2: Deterministic forests and the MLL score

Let  $F \in DAG_V$  be a deterministic forest, and  $R(F) \subset V$  its roots. If  $G_R$  is a solution of  $BNSL_{MLL}$  on  $\{X_j, j \in R(F)\}$ , then  $F \cup G_R$  is a solution of  $BNSL_{MLL}$  on  $\{X_1, \ldots, X_n\}$ :

$$s^{\mathsf{MLL}}(\mathsf{F} \cup \mathsf{G}_{\mathsf{R}} : \mathsf{D}) = \max_{\mathsf{G} \in \mathsf{DAG}_{\mathsf{V}}} s^{\mathsf{MLL}}(\mathsf{G} : \mathsf{D})$$

- I Bayesian network structure learning
- II Determinism and Bayesian networks
- III Structure learning with (quasi-)determinism screening

IV - Experiments

V - Discussion

# III-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

## Summary of the theoretical results

- $\cdot\,$  If we can relate all variables by a single deterministic tree, then this tree is a optimal solution to  $\mathsf{BNSL}_{\mathsf{MLL}}$
- If we can relate subsets of the variables by deterministic trees, solving BNSL<sub>MLL</sub> narrows down to the roots of the trees
- $\rightarrow$  Let's search for deterministic subtrees before solving BNSL!

# III-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

## Summary of the theoretical results

- $\cdot\,$  If we can relate all variables by a single deterministic tree, then this tree is a optimal solution to  $\mathsf{BNSL}_{\mathsf{MLL}}$
- If we can relate subsets of the variables by deterministic trees, solving BNSL<sub>MLL</sub> narrows down to the roots of the trees
- $\rightarrow$  Let's search for deterministic subtrees before solving BNSL!

#### What if the target BNSL score is not MLL score ?

Intuition: trees have very small complexity and are therefore also interesting wrt scores such as BIC or BDe.

# III-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

## Summary of the theoretical results

- $\cdot\,$  If we can relate all variables by a single deterministic tree, then this tree is a optimal solution to  $\mathsf{BNSL}_{\mathsf{MLL}}$
- If we can relate subsets of the variables by deterministic trees, solving BNSL<sub>MLL</sub> narrows down to the roots of the trees
- $\rightarrow$  Let's search for deterministic subtrees before solving BNSL!

#### What if the target BNSL score is not MLL score ?

Intuition: trees have very small complexity and are therefore also interesting wrt scores such as BIC or BDe.

#### What about quasi-determinism?

Empirical determinism is rare, however very strong relationships (i.e. very low conditional entropies) are common

 $\rightarrow$  Let's search for quasi-deterministic subtrees before solving BNSL!

Algorithm 1 Bayesian network structure learning with quasi deterministic screening (qds-BNSL)

Input: D,  $\epsilon$ , sota-BNSL

- 1: Compute  $F_{\epsilon}$  by running **qd-screening** with D and  $\epsilon$
- 2: Identify  $R(F_{\epsilon}) = \{i \in [1, n] \mid \pi^{F_{\epsilon}}(i) = \emptyset\}$ , the set of  $F_{\epsilon}$ 's roots.
- 3: Compute  $G^*_{R(F_{\epsilon})}$  by running sota-BNSL on  $X_{R(F_{\epsilon})}$

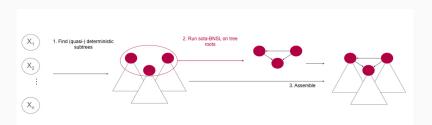
4: 
$$G_{\epsilon}^* \leftarrow F_{\epsilon} \cup G_{R(F_{\epsilon})}^*$$
  
**Output**:  $G_{\epsilon}^*$ 

Algorithm 2 Bayesian network structure learning with quasi deterministic screening (qds-BNSL)

Input: D,  $\epsilon$ , sota-BNSL

- 1: Compute  $F_{\epsilon}$  by running **qd-screening** with D and  $\epsilon$
- 2: Identify  $R(F_{\epsilon}) = \{i \in [1, n] \mid \pi^{F_{\epsilon}}(i) = \emptyset\}$ , the set of  $F_{\epsilon}$ 's roots.
- 3: Compute  $G^*_{R(F_{\epsilon})}$  by running sota-BNSL on  $X_{R(F_{\epsilon})}$

4: 
$$G_{\epsilon}^* \leftarrow F_{\epsilon} \cup G_{R(F_{\epsilon})}^*$$
  
**Output**:  $G_{\epsilon}^*$ 



Algorithm 3 Bayesian network structure learning with quasi deterministic screening (qds-BNSL)

Input: D, e, sota-BNSL

- 1: Compute  $F_{\epsilon}$  by running **qd-screening** with D and  $\epsilon$
- 2: Identify  $R(F_{\epsilon}) = \{i \in [\![1, n]\!] \mid \pi^{F_{\epsilon}}(i) = \emptyset\}$ , the set of  $F_{\epsilon}$ 's roots.
- 3: Compute  $G^*_{R(F_{\epsilon})}$  by running sota-BNSL on  $X_{R(F_{\epsilon})}$

4: 
$$G_{\epsilon}^* \leftarrow F_{\epsilon} \cup G_{R(F_{\epsilon})}^*$$
  
Output:  $G_{\epsilon}^*$ 

## Complexity

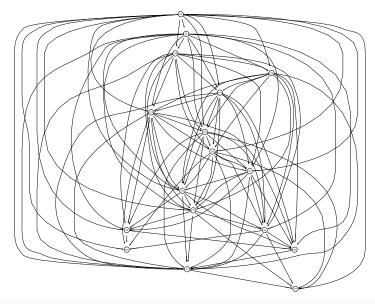
- qd-screening: O(n<sup>2</sup>)
- · qds-BNSL: calls sota-BNSL on  $|R(F_{\epsilon})| \le n$  variables (exact BNSL:  $O(2^{p})$ , heuristics are very time-intensive as well)

We expect qds-BNSL to be faster than sota-BNSL when  $R(F_{\epsilon}) < n$ 

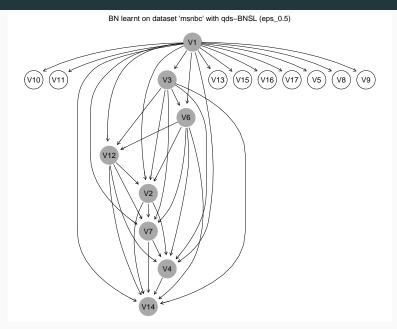
- I Bayesian network structure learning
- II Determinism and Bayesian networks
- III Structure learning with (quasi-)determinism screening
- IV Experiments
- V Discussion

## IV-1. BAYESIAN NETWORKS LEARNT ON THE MSNBC DATASET: BASELINE

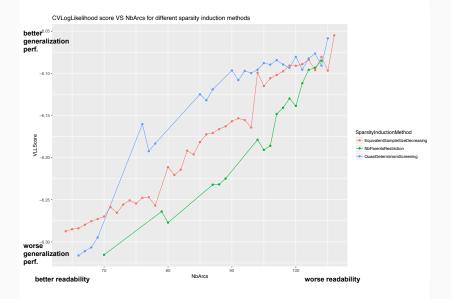
BN learnt on dataset 'msnbc' with sota-BNSL



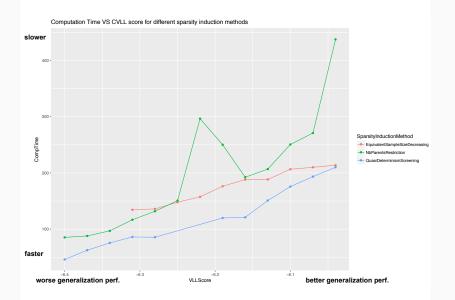
## IV-1. BAYESIAN NETWORKS LEARNT ON THE MSNBC DATASET: QDS



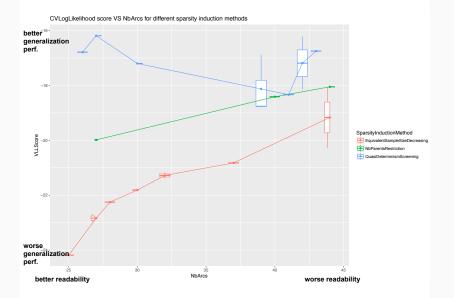
# IV-2. PERFORMANCE/READABILITY TRADEOFF - MSNBC DATASET



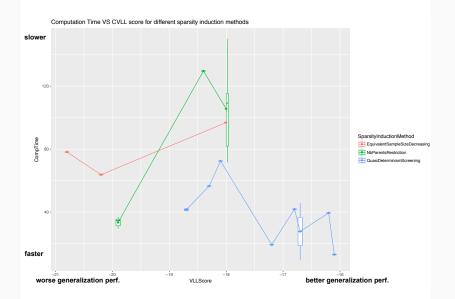
# IV-3. PERFORMANCE/COMPUTATION TIME TRADEOFF - MSNBC DATASET



# IV-4. PERFORMANCE/READABILITY TRADEOFF - PIU DATASET



# IV-5. PERFORMANCE/COMPUTATION TIME TRADEOFF - PIU DATASET



- I Bayesian network structure learning
- II Determinism and Bayesian networks
- III Structure learning with (quasi-)determinism screening
- IV Experiments
- V Discussion

## v-1. DISCUSSION AND PERSPECTIVES

#### Summary

- $\cdot\,$  Deterministic screening is consistent wrt the MLL score
- BN learnt via qds-BNSL have often have a very interesting performance-vs-readability tradeoff, and are consistently faster to compute for a given performance score than with usual methods

However these properties depend highly on the dataset

## v-1. DISCUSSION AND PERSPECTIVES

#### Summary

- $\cdot\,$  Deterministic screening is consistent wrt the MLL score
- BN learnt via qds-BNSL have often have a very interesting performance-vs-readability tradeoff, and are consistently faster to compute for a given performance score than with usual methods

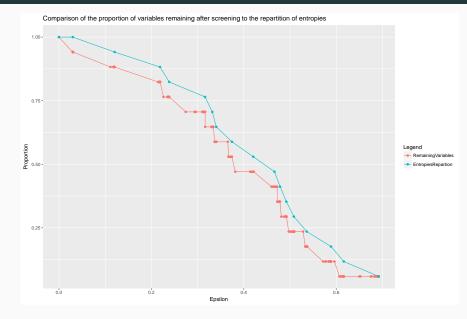
However these properties depend highly on the dataset

## Perspectives

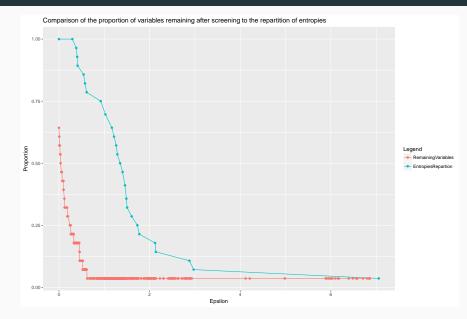
In the future we plan to

- Search for guarantees of qds-BNSL wrt scores as BIC, BDe or CVLL
- $\cdot$  Look for a criteria that enables us to choose  $\epsilon$  in a principled way

## v-2. Candidate criterion for choice of $\epsilon$ - msnbc dataset



## v-3. Candidate criterion for choice of $\epsilon$ - Piu dataset



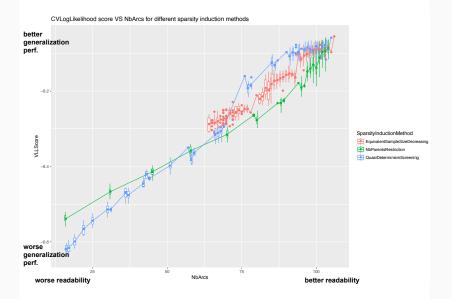
# THANK YOU

# MORE RESULTS

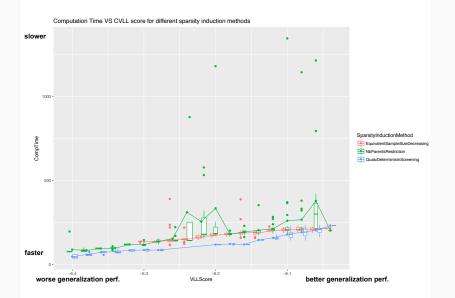
# APP 1. PERFORMANCE/READABILITY TRADEOFF - MSNBC DATASET (1/2)



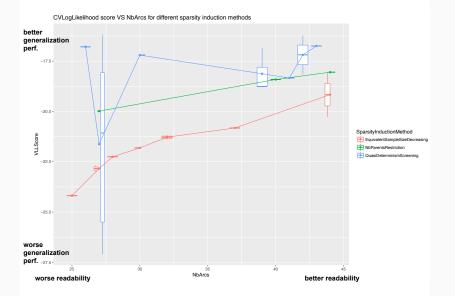
# APP 1. PERFORMANCE/READABILITY TRADEOFF - MSNBC DATASET (2/2)



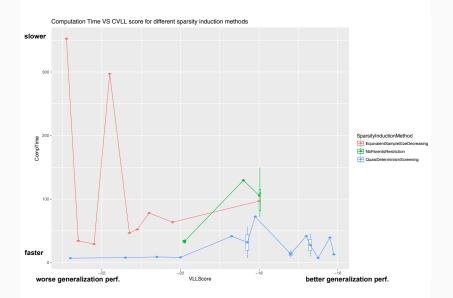
# APP 2. PERFORMANCE/TIME TRADEOFF - MSNBC DATASET



# APP 3. PERFORMANCE/READABILITY TRADEOFF - PIU DATASET



# APP 4. PERFORMANCE/TIME TRADEOFF - PIU DATASET



# APP 5. (QUASI-)DETERMINISTIC SCREENING: ALGORITHM

## Algorithm 4 Quasi-determinism screening (qds)

Input: D ,  $\epsilon$ 

1: Compute empirical cond. entropy matrix  $\mathbb{H}^{D}=\left(H^{D}(X_{i}|X_{j})\right)_{1 < i,j < n}$ 

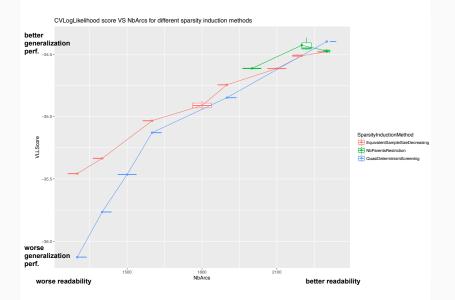
- 2: for i = 1 to n do
- 3: compute  $\pi_{\epsilon}(i) = \{j \in \llbracket 1, n \rrbracket \setminus \{i\} \mid \mathbb{H}_{ij}^{D} \leq \epsilon\}$

4: for i = 1 to n do  
5: if 
$$\exists j \in \pi_{\epsilon}(i)$$
 s.t.  $i \in \pi_{\epsilon}(j)$  then  
6: if  $\mathbb{H}_{ij}^{\mathbb{D}} \leq \mathbb{H}_{ji}^{\mathbb{D}}$  then  $\pi_{\epsilon}(j) \leftarrow \pi_{\epsilon}(j) \setminus \{i\}$   
7: else  $\pi_{\epsilon}(i) \leftarrow \pi_{\epsilon}(i) \setminus \{j\}$   
8: for i = 1 to n do  
9:  $\pi_{\epsilon}^{*}(i) \leftarrow \underset{j \in \pi_{\epsilon}(i)}{\operatorname{argmin}} |\operatorname{Val}(X_{j})|$ 

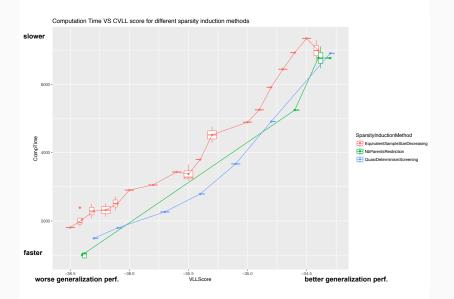
10: Compute forest  $F_{\epsilon} = (V_{F_{\epsilon}}, A_{F_{\epsilon}})$ , where

$$V_{F_{\epsilon}} = \llbracket 1, n \rrbracket$$
$$A_{F_{\epsilon}} = \{(\pi_{\epsilon}^{*}(i), i) \mid i \in \llbracket 1, n \rrbracket \text{ s.t. } \pi_{\epsilon}^{*}(i) \neq \emptyset\}$$
Output:  $F_{\epsilon}$ 

# APP 6. PERFORMANCE/READABILITY TRADEOFF - BOOK DATASET



# APP 7. PERFORMANCE/COMPUTATION TIME TRADEOFF - BOOK DATASET



## APP 8.. CANDIDATE CRITERION FOR CHOICE OF $\epsilon$ - book dataset

