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Setting

-~ (X4,...,Xn): tuple of categorical random variables
- D: dataset containing M i.i.d instances of (Xq,...,Xn)



I-1. BAYESIAN NETWORKS

Setting
-~ (X4,...,Xn): tuple of categorical random variables
- D: dataset containing M i.i.d instances of (Xq,...,Xn)

Bayesian network: B = (G, ) where

- G = (V,A): DAG structure with
-V ={1,...,n} vertices associated to the n variables
- A C V2 set of arcs
- m the set of parents of i in G
Factorization of the joint distribution:

n

P(X1,..., %) = [ [ POXiIXx,)

i=1

- 0: parameters of the local P(X|Xx,)
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Score&search-based BN structrure learning

For a scoring function s : DAGy — R, BNSLs comes down to:

G e argmax s(G)
GEDAGy



I-2. BAYESIAN NETWORK STRUCTURE LEARNING

Score&search-based BN structrure learning

For a scoring function s : DAGy — R, BNSLs comes down to:

G e argmax s(G)
GEDAGy

Some scoring functions
Most scoring functions are based on the log-likelihood [(6 : D):
M n
I(0:D)=>"> log (%mﬂxm [m])
m=1 i=1
As the MaxLogLikelihood score (MLL), (leads to complete graphs):

MLL(G . D) — :
s"(G:D) = e”é%)él(e : D)

In practice, we rather use regularized scores such as BIC, AIC or BDe
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I1-1. ENTROPY AND MLL SCORE

Conditional Shannon entropy

The conditional Shannon entropy of X; knowing X; is defined as

H(Xi[X) = Zp (xi, %)) log(P(xi[x;))

H(X|X;) = 0 if and only if the value of X; is entirely determined by the
value of X



I1-1. ENTROPY AND MLL SCORE

Conditional Shannon entropy

The conditional Shannon entropy of X; knowing X; is defined as

H(Xi[X) = Zp (xi, %)) log(P(xi[x;))

H(X|X;) = 0 if and only if the value of X; is entirely determined by the
value of X

Linking the entropy with MLL score

The MLL score can be rewritten as

sMY(G: D) _—MZH (Xi|Xx,)



I1-2. DETERMINISM

Definitions: determinism and quasi-determinism

The relationship X; — X; is deterministic wrt D iff
HO(XX;) = 0
The relationship X; — X; is e—quasi deterministic wrt D iff

HP(Xi]X) < e

Definition: deterministic graphs

A DAG G is deterministic wrt D iff for every i € V st m # 0,
HP(Xi|X,) = O

(analogous definition for quasi-deterministic DAGS)



11-3. OPTIMAL BN WITH THE MAXLIKELIHOOD SCORE (1/2)

Proposition 1: Deterministic trees and the MLL score

If T € DAGy is a deterministic tree (single-parented DAG) wrt D then T
is a solution of BNSLy.:

MLL(T . 1) — MLL( G
s (T:D) = Gmax s (G: D)



11-3. OPTIMAL BN WITH THE MAXLIKELIHOOD SCORE (1/2)

Proposition 1: Deterministic trees and the MLL score

If T € DAGy is a deterministic tree (single-parented DAG) wrt D then T
is a solution of BNSLy.:

MLL(T . 1) — MLL( G
s (T:D) = Gmax s (G: D)

Proposition 2: Deterministic forests and the MLL score

Let F € DAGy be a deterministic forest, and R(F) C V its roots. If Gg is
a solution of BNSLui. on {X;,] € R(F)},
then FU Gg is a solution of BNSLyL on {Xi,..., X, }:

sMY(FUGR: D) = max s"(G: D)
GEDAGy
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111-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

Summary of the theoretical results

- If we can relate all variables by a single deterministic tree, then
this tree is a optimal solution to BNSLw.

- If we can relate subsets of the variables by deterministic trees,
solving BNSLy narrows down to the roots of the trees

— Let's search for deterministic subtrees before solving BNSL!



n-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

Summary of the theoretical results

- If we can relate all variables by a single deterministic tree, then
this tree is a optimal solution to BNSLw.

- If we can relate subsets of the variables by deterministic trees,
solving BNSLy narrows down to the roots of the trees

— Let's search for deterministic subtrees before solving BNSL!

What if the target BNSL score is not MLL score ?

Intuition: trees have very small complexity and are therefore also
interesting wrt scores such as BIC or BDe.



n-1. (QUASI-)DETERMINISTIC SCREENING: IDEA

Summary of the theoretical results

- If we can relate all variables by a single deterministic tree, then
this tree is a optimal solution to BNSLw.

- If we can relate subsets of the variables by deterministic trees,
solving BNSLy narrows down to the roots of the trees

— Let's search for deterministic subtrees before solving BNSL!

What if the target BNSL score is not MLL score ?

Intuition: trees have very small complexity and are therefore also
interesting wrt scores such as BIC or BDe.

What about quasi-determinism ?

Empirical determinism is rare, however very strong relationships (i.e.
very low conditional entropies) are common
— Let’s search for quasi-deterministic subtrees before solving BNSL!



I11-2. BNSL WITH QD-SCREENING: ALGORITHM

Algorithm 1 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ¢, sota-BNSL

Compute F. by running qd-screening with D and

Identify R(F¢) = {i € [1,n] | wF<(i) = 0}, the set of F.'s roots.
Compute Gy by running sota-BNSL on X¢,)

G!  Fe UGHs)

Output: G




I11-2. BNSL WITH QD-SCREENING: ALGORITHM

Algorithm 2 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)

Input: D, ¢, sota-BNSL

Compute F. by running qd-screening with D and

Identify R(F¢) = {i € [1,n] | wF<(i) = 0}, the set of F.'s roots.
Compute Gy by running sota-BNSL on X¢,)

G!  Fe UGHs)

Output: G

|/ X, \: 1. Find (quasi-) deterministic
o =~ .?.
(@ [ ) S i

3. Assemble

2. Run sota-BNSL on tree
roots




I11-2. BNSL WITH QD-SCREENING: ALGORITHM

Algorithm 3 Bayesian network structure learning with quasi deter-
ministic screening (qds-BNSL)
Input: D, ¢, sota-BNSL

1. Compute F. by running qd-screening with D and e
2. Identify R(F.) = {i € [1,n] | #f<(i) = 0}, the set of F.'s roots.
3: Compute GE(Fe) by running sota-BNSL on Xg,)
& GY  F U Ghe )
Output: G}
Complexity

- qd-screening: O(n?)
- qds-BNSL: calls sota-BNSL on |R(F¢)| < n variables (exact BNSL:
0(2P), heuristics are very time-intensive as well)

We expect qds-BNSL to be faster than sota-BNSL when R(F.) < n
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IV-1. BAYESIAN NETWORKS LEARNT ON THE MSNBC DATASET: QDS

BN learnt on dataset 'msnbc’ with qds-BNSL (eps_0.5)




IV-2. PERFORMANCE/READABILITY TRADEOFF - MSNBC DATASET

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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IV-3. PERFORMANCE/COMPUTATION TIME TRADEOFF - MSNBC DATASET

Computation Time VS CVLL score for different sparsity induction methods

slower
400~
300~
° SparsitylnductionMethod
£ EqualentSamplSizeDecroasing
s ~+- NoParentsRestriction
8 QuasiDeterminismScreening
200-
100~
faster
64 -63 62 61
worse generalization perf. VLLScore better generalization perf.



IV-4. PERFORMANCE /READABILITY TRADEOFF - PIU DATASET

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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Computation Time VS CVLL score for different sparsity induction methods
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V-1. DISCUSSION AND PERSPECTIVES

Summary
- Deterministic screening is consistent wrt the MLL score

- BN learnt via qds-BNSL have often have a very interesting
performance-vs-readability tradeoff, and are consistently faster
to compute for a given performance score than with usual
methods

However these properties depend highly on the dataset



V-1. DISCUSSION AND PERSPECTIVES

Summary
- Deterministic screening is consistent wrt the MLL score

- BN learnt via qds-BNSL have often have a very interesting
performance-vs-readability tradeoff, and are consistently faster
to compute for a given performance score than with usual
methods

However these properties depend highly on the dataset
Perspectives
In the future we plan to

- Search for guarantees of qds-BNSL wrt scores as BIC, BDe or
CVLL

- Look for a criteria that enables us to choose e in a principled way



V-2. CANDIDATE CRITERION FOR CHOICE OF € - MSNBC DATASET

Comparison of the proportion of variables remaining after screening to the repartition of entropies
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V-3. CANDIDATE CRITERION FOR CHOICE OF € - PIU DATASET

Comparison of the proportion of variables remaining after screening to the repartition of entropies

x Legend

RemainingVariables
050~
e~ EntropiesRepartion

Proportion

Epsilon

23
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APP 1. PERFORMANCE /READABILITY TRADEOFF - MSNBC DATASET (1/2)

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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APP 1. PERFORMANCE /READABILITY TRADEOFF - MSNBC DATASET (2/2)

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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APP 2. PERFORMANCE/TIME TRADEOFF - MSNBC DATASET

Computation Time VS CVLL score for different sparsity induction methods
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APP 3. PERFORMANCE/READABILITY TRADEOFF - PIU DATASET

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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APP 4. PERFORMANCE /TIME TRADEOFF - PIU DATASET

Computation Time VS CVLL score for different sparsity induction methods
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APP 5. (QUASI-)DETERMINISTIC SCREENING: ALGORITHM

Algorithm &4 Quasi-determinism screening (qds)
Input: D, €
1: Compute empirical cond. entropy matrix HP = (HD(><i|><J-))1<i7j<n
2. fori=1tondo

3 compute 7 (i) = {j € [1,n] \ {i} | H < ¢}
4 fori=1tondo

5 if 3j € m.(i) s.t. i € m.(j) then

6: if HE < Hﬁ then 7.(j) <+ 7(j) \ {i}

7: else me() < 7 () \ {j}

8 fori=1tondo

9 mi(i) < argmin |Val(X;)|
jeme(i)
10: Compute forest Fe = (Ve_, Ar.), where
Ve, = [[17 n]]
A, = {(me(0),1) [ € [1,n] s.t. w2 (i) # 0}
Output: F.




APP 6. PERFORMANCE / READABILITY TRADEOFF - BOOK DATASET

CVLogLikelihood score VS NbArcs for different sparsity induction methods
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APP 7. PERFORMANCE /COMPUTATION TIME TRADEOFF - BOOK DATASET

Computation Time VS CVLL score for different sparsity induction methods
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CANDIDATE CRITERION FOR CHOICE OF ¢ - BOOK DATASET

Comparison of the proportion of variables remaining after screening to the repartition of entropies
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